Skip to main content
Advanced Search

Filters: Tags: earthquake hazards (X) > Categories: Data (X)

11 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
In March 2015, the U.S. Geological Survey acquired seismic reflection and refraction data along an approximately 2.8-km-long profile across northwest-trending San Andreas Fault splays located at the Dos Palmas Preserve east of Salton Sea. To acquire the reflection and refraction data, we collocated shots and geophones, spaced every 3 m along the profile. We used 933 SercelTM L40A P-wave (40-Hz vertical-component) geophones with a sensitivity of 22.34 volts/meter/second to record 925 P-wave shots. We generated P-wave data using one of two active sources: 400-grain Betsy-SeisgunTM shots at approximately every 90 m and a 3.5-kg sledgehammer and steel plate combination at every 3 m between the seisgun shots. All data...
thumbnail
Currently, there are many datasets describing landslides caused by individual earthquakes, and global inventories of earthquake-induced landslides (EQIL). However, until recently, there were no datasets that provide a comprehensive description of the impacts of earthquake-induced landslide events. In this data release, we present an up-to-date, comprehensive global database containing all literature-documented earthquake-induced landslide events for the 249-year period from 1772 through August 2021. The database represents an update of the catalog developed by Seal et al. (2020), which summarized events through March 2020 and was based on the catalog developed by Nowicki Jessee et al. (2020). The revised catalog...
thumbnail
This is a catalog of precise relocations of earthquakes surrounding the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption. These were generated using using surface-wave double-difference measurements, and relative magnitudes were computed between events. For details of the methodology used to produce this catalog, and the interpretation of these data, see the Seismological Research Letter publication "High-Precision Characterization of Seismicity from the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption". Locations use the WGS 1984 Datum. One comma-separated table is provided in this data release, relocations.csv, which is a summary of the relocation magnitude analysis. It includes 18 columns: Column 1 (time):...
Earthquake-triggered ground-failure, such as landsliding and liquefaction, can contribute significantly to losses, but our current ability to accurately include them in earthquake hazard analyses is limited. The development of robust and transportable models requires access to numerous inventories of ground failure triggered by earthquakes that span a broad range of terrains, shaking characteristics, and climates. We present an openly accessible, centralized earthquake-triggered ground-failure inventory repository in the form of a ScienceBase Community to provide open access to these data, and help accelerate progress. The Community hosts digital inventories created by both USGS and non-USGS authors. We present...
thumbnail
In August 2017, the U.S. Geological Survey acquired high-resolution P- and S-wave seismic data near six Southern California Seismic Network (SCSN) recording stations in southern California: CI.OLI Olinda; CI.SRN Serrano; CI.MUR Murrieta; CI.LCG La Cienega; CI.RUS Rush; and CI.STC Santa Clara (Figure 1). These strong-motion recording stations are located inside Southern California Edison electrical substations, critical infrastructures that provide essential services to millions of customers. The primary goals of the seismic survey were to understand the potential for amplified ground shaking and to evaluate lateral variability in shear-wave velocity at these sites. We deployed up to 88 geophones at 2-m or 4-m...
thumbnail
In May 2019, the U.S. Geological Survey acquired high resolution P- and S-wave seismic data near six seismic network recording stations in San Bernardino County, California: Southern California Seismic Network CI.CLT Calelectic, CI.MLS Mira Loma, CI.CJM Cajon Mountain and CI.HLN Highland; California Strong Motion Instrumentation Program station CE.23542; and US National Strong-Motion Network station NP.5326 (Figure 1). The primary goals of the seismic survey were to better understand the potential for amplified ground shaking, to evaluate lateral variability in shear-wave velocity, and to calculate Vs30 at these sites. We deployed up to 67 DTCC SmartSolo 3-component seismometer systems ("nodes") at 2-m spacing...
thumbnail
Airborne magnetic surveys were conducted in Oklahoma from August 11th, 2017-October 28th, 2017, by Goldak Airborne Surveys. Here we present downloadable flight line data from those surveys in comma-separated values (csv format). Three areas were flown along a draped surface with a nominal survey height above ground of 120 meters. The flight line spacing for these areas was 200 to 400 m for Area 123, in southwestern Oklahoma; 1000 m for Area 4, in northwestern Oklahoma, and 800 m for Area 5, in north-central Oklahoma. For each area control lines were flown at ten times the traverse line spacing. The surveys were flown to map subsurface geologic variations including ancient magmatic bodies, faults, and other geologic...
thumbnail
In November 2016, the U.S. Geological Survey acquired high-resolution P- and S-wave seismic data across the surface trace of the West Napa Fault zone at Saintsbury Winery in Napa, California. We acquired seismic reflection, refraction, and guided-wave data along a 115-m-long profile across the known surface rupture zone of the West Napa Fault zone. To acquire the reflection and refraction data, we co-located shots and geophones, spaced every meter along the profile. We used 116 SercelTM L40A P-wave (40-Hz vertical-component) geophones with a sensitivity of 22.34 volts/meter/second to record 116 P-wave shots. We also used 116 SercelTM L28-LBH S-wave (4.5-Hz horizontal-component) geophones with a sensitivity of...
thumbnail
Note: this data release has been superseded by version 2.0, available here: https://doi.org/10.5066/P9RG3MBE. Currently, there are many datasets describing landslides caused by individual earthquakes, and global inventories of earthquake-induced landslides (EQIL). However, until recently, there were no datasets that provide a comprehensive description of the impacts of earthquake-induced landslide events. In this data release, we present an up-to-date, comprehensive global database containing all literature-documented earthquake-induced landslide events for the 244-year period from 1772 through May 2020.The database represents an update of the catalog developed by Nowicki Jessee et al. (2020), which summarized...
thumbnail
In September 2017, the U.S. Geological Survey acquired high resolution P- and S-wave seismic data across the suspected trace of the West Napa Fault zone in St. Helena, California, approximately 70 m north of the previous seismic survey conducted in April 2017 (Chan et al., 2018). We acquired seismic reflection, refraction, and guided-wave data along a 75-m-long profile across the expected trend of the West Napa Fault zone. To acquire the reflection and refraction data, we co-located shots and geophones, spaced every 1 and 2 m along the profile. We used 77 SercelTM L40A P-wave (40-Hz vertical-component) geophones with a sensitivity of 22.34 volts/meter/second to record 60 P-wave shots, and 77 SercelTM L28-LBH S-wave...
thumbnail
In November 2016, the U.S. Geological Survey acquired high-resolution P- and S-wave seismic data across the surface trace of the West Napa Fault zone near Buhman Avenue in Napa, California. We acquired seismic reflection, refraction, and guided-wave data along a 117-m-long profile across the known surface rupture zone of the West Napa Fault zone. To acquire the reflection and refraction data, we co-located shots and geophones, spaced every meter along the profile. We used 118 SercelTM L40A P-wave (40-Hz vertical-component) geophones with a sensitivity of 22.34 volts/meter/second to record 118 P-wave shots. We also used 118 SercelTM L28-LBH S-wave (4.5-Hz horizontal-component) geophones with a sensitivity of 31.3...


    map background search result map search result map Airborne Magnetic Surveys over Oklahoma, 2017 2015 high resolution seismic acquisition at Dos Palmas Preserve, Mecca, California 2017b high resolution seismic imaging of the West Napa Fault Zone, St. Helena, California High-resolution seismic imaging of the West Napa Fault Zone at Saintsbury Winery, Napa, California High-resolution seismic imaging of the West Napa Fault Zone at Buhman Avenue, Napa, California High-resolution seismic data acquired at six Southern California Seismic Network (SCSN) recording stations in 2017 High-resolution seismic data acquired at six seismic network recording stations in San Bernardino County, California in 2019 High-Precision Seismicity Catalog for the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption 2017b high resolution seismic imaging of the West Napa Fault Zone, St. Helena, California 2015 high resolution seismic acquisition at Dos Palmas Preserve, Mecca, California High-resolution seismic imaging of the West Napa Fault Zone at Saintsbury Winery, Napa, California High-resolution seismic imaging of the West Napa Fault Zone at Buhman Avenue, Napa, California High-resolution seismic data acquired at six seismic network recording stations in San Bernardino County, California in 2019 High-resolution seismic data acquired at six Southern California Seismic Network (SCSN) recording stations in 2017 Airborne Magnetic Surveys over Oklahoma, 2017 High-Precision Seismicity Catalog for the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption