Skip to main content
Advanced Search

Filters: Tags: emergency response (X)

4 results (29ms)   

View Results as: JSON ATOM CSV
thumbnail
Compiled Vs30 measurements obtained by studies funded by the U.S. Geological Survey (USGS) and other governmental agencies. Thus far, there are 2,997 sites in the United States, along with metadata for each measurement from government-sponsored reports, Web sites, and scientific and engineering journals. Most of the data originated from publications directly reporting the work of field investigators. A small subset (less than 20 percent) of Vs30 values was previously compiled by the USGS and other research institutions. Whenever possible, Vs30 originating from these earlier compilations were crosschecked against published reports. Both downhole and surface-based Vs30 estimates are represented. Most of the VS30 data...
thumbnail
The Global Vs30 Server allows a user to select from a map or input a rectangular region of interest. It then provides (optionally) a Vs30 grid in ASCII or GMT grid format, and a JPEG Vs30 map. Wald et al. (2004) first, and Wald and Allen (BSSA, 2007, in press), more fully, describe a methodology for deriving maps of seismic site conditions using topographic slope as a proxy. Vs30 measurements (the average shear-velocity down to 30 m) are correlated against topographic slope to develop two sets of coefficients for deriving Vs30: one for active tectonic regions that possess dynamic topographic relief, and one for stable continental regions where changes in topography are more subdued.
thumbnail
The ANSS Backbone Network is based on the core of the original US National Seismic Network. In partnership with the National Science Foundation, the USGS worked with the Earthscope program (through the USArray project and IRIS) in 2004-2006 to upgrade and install new backbone stations. This effort was completed in September 2006, with 15 new stations installed and 20 existing stations upgraded. Today, the ANSS Backbone consists of nearly 100 stations in the United States, many of them contributed by partner networks and organizations.
thumbnail
Data used for analysis described in the publication titled "Shallow-Landslide Hazard Map of Seattle, Washington" (available at https://pubs.usgs.gov/of/2006/1139/). The data consisted of a digital slope map derived from recent Light Detection and Ranging (LIDAR) imagery of Seattle, recent digital geologic mapping, and shear-strength test data for the geologic units in the surrounding area. The combination of these data layers within a Geographic Information System (GIS) platform allowed the preparation of a shallow landslide hazard map for the entire city of Seattle.


    map background search result map search result map Data for Shallow-Landslide Hazard Map of Seattle, Washington Data for Shallow-Landslide Hazard Map of Seattle, Washington