Skip to main content
Advanced Search

Filters: Tags: ensemble (X) > Date Range: {"choice":"year"} (X)

4 results (28ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The CA Academy of Science and Point Blue Conservation Science conducted a systematic analysis of uncertainty in modeling the future distributions of ~50 California endemic plant species and ~50 California land birds, explicitly partitioning among 5 alternative sources of variation and testing for their respective contributions to overall variation among modeled outcomes. They mapped the uncertainty from identified sources, which can guide decisions about monitoring, restoration, acquisition, infrastructure, etc., in relation to climate change.
thumbnail
Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel fires. This project sought to assess the vulnerability of forests in the southwestern U.S. to climate change and wildfire, in order to understand how these ecosystems might become altered as a result. Researchers (a) examined how climate change impacts wildfires in the region, to better understand fire risk; (b) identified...
Parent Project: Range-Wide Climate Vulnerability Assessment for Threatened Bull Trout Publication Abstract: Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site-specific frequency distributions of occurrence probabilities across a species’ range. We illustrated the method by forecasting suitable...
thumbnail
Across the Southern Great Plains, increasing temperatures are expected to alter the hydrological functioning of the region by contributing to severe droughts, more intense rainfall events, and more severe flooding episodes. These changes could adversely affect human and ecological communities. The ability to better predict future changes in precipitation and the response of hydrologic systems in the region could help mitigate their negative impacts. Yet while today’s global climate models provide large-scale projections of future temperature and precipitation patterns that can be broadly useful for large-scale water resource planning, they are often not appropriate for use at a smaller, more local scale. This research...


    map background search result map search result map The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S. Informing Hydrologic Planning in the Red River Valley through Improved Regional Climate Projections The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S. Informing Hydrologic Planning in the Red River Valley through Improved Regional Climate Projections