Skip to main content
Advanced Search

Filters: Tags: flooding (X)

127 results (22ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This map was created to help assess impacts on nonindigenous aquatic species distributions due to flooding associated with Hurricane Irma. Storm surge and flood events can assist expansion and distribution of nonindigenous aquatic species through the connection of adjacent watersheds, backflow of water upstream of impoundments, increased downstream flow, and creation of freshwater bridges along coastal regions. This map will help natural resource managers determine potential new locations for individual species, or to develop a watch list of potential new species within a watershed. These data include a subset of data from the Nonindigenous Aquatic Species Database, that fall within the general area of the 2017...
thumbnail
Data to support carbon (C) budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. This work represents the first estimates of C standing stocks, C mass balance, soil C burial, and lateral C export to aquatic environments in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. First release: 2018 Revised: May 2019 (ver. 2.0)
thumbnail
We characterized coastal wetland responses to flooding stress by measuring vegetation cover, wetland elevation and water elevation in healthy and degrading wetlands dominated by Spartina patens. Wetland elevation was measured using real-time kinematic survey methods. Vegetation cover was determined by visual estimation methods, and water elevation was measured using in situ continuous recorders. In addition to these local-scale responses, we also measured landscape-scale patterns of land and water aggregation or fragmentation using remotely sensed data (Jones et al., 2018). Associated products: Jones, W.R., Hartley, S.B., Stagg, C.L., and Osland, M.J. 2018. Land-water classification for selected sites in McFaddin...
thumbnail
Surficial geologic maps of the Eloy South Quadrangle of the Picacho Basin. The Picacho basin is a large and complex graben surrounded by horsts and half-horsts, which are now the Picacho, Casa Grande, Silverbell, and Sacaton mountains. It formed mainly in response to late Miocene extension. Internal drainage probably persisted until about 3 million years ago. Several thousand meters of sediments fill the basin; 2000 m of evaporites and claystone form the bulk of the basin fill (Scarborough and Pierce, 1978). The upper 200 meters or so of basin fill was deposited by a gradually aggrading, regionally integrated drainage system. Young alluvium of the Santa Cruz River is up to 30 m thick and is found within 3.2 km of...
thumbnail
USGS researchers with the Patterns in the Landscape – Analyses of Cause and Effect (PLACE) project are releasing a collection of high-frequency surface water map composites derived from daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Using Google Earth Engine, the team developed customized image processing steps and adapted the Dynamic Surface Water Extent (DSWE) to generate surface water map composites in California for 2003-2019 at a 250-m pixel resolution. Daily maps were merged to create 6, 3, 2, and 1 composite(s) per month corresponding to approximately 5-day, 10-day, 15-day, and monthly products, respectively. The resulting maps are available as downloadable files for each year. Each...
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data; Tags: CMHRP, Climate Change, Climatology, Coastal Processes, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project, phase 5 (CMIP5), were used as boundary conditions to the physics-based WAVEWATCH3 numerical wave model for the area encompassing the main Hawaiian islands. Two climate change scenarios for each of the four GCMs...
thumbnail
This data release provides flooding extent polygons (flood masks) and depth values (flood points) based on wave-driven total water levels for 22 locations within the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands. For each of the 22 locations there are eight associated flood mask polygons and flood depth point files: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. These flood masks can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation...
Tags: American Samoa, CMHRP, CNMI, Cayo Vieques, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques). For each island there are 8 associated flood mask and flood depth shapefiles: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
The western coastline of Alaska is highly susceptible to coastal storms, which can cause coastal erosion, flooding, and have other pernicious effects to the environment and commercial efforts. The reduction in ice coverage due to climate change could potentially increase the frequency and degree of coastal flooding and erosion. Further, estuaries and delta systems act as conduits for storm surges, so when there is less nearshore ice coverage, these systems could introduce storm surge into terrestrial environments unaccustomed to saline intrusion, flooding, or other alien biogeochemical factors.This project quantified the effect of reduced nearshore ice coverage on coastal flooding. The project developed a large...
Categories: Collection, Data; Tags: Academics & scientific researchers, COASTAL AREAS, COASTAL AREAS, COASTAL PROCESSES, COASTAL PROCESSES, All tags...
This map service is an information surface representing the dominant class within the soil map unit polygon for flooding frequency probability. Each component (and therefore soil map unit polygon) falls into one of the following classes according to NRCS: None, Very rare, Rare, Occasional, Frequent, and Very frequent. The class belonging to the component that makes up the highest percentage of the map unit is reported by the map service. Another service exists for flooding frequency class which reports the most frequent class in the soil map unit. The concept is similar but for some purposes knowing the most frequently flooding component may be the most useful piece of information to know about soil map unit...
We compared beaver (Castor canadensis) foraging patterns on Fremont cottonwood (Populus deltoides subsp. wislizenii) saplings and the probability of saplings being cut on a 10 km reach of the flow-regulated Green River and a 8.6 km reach of the free-flowing Yampa River in northwestern Colorado. We measured the abundance and density of cottonwood on each reach and followed the fates of individually marked saplings in three patches of cottonwood on the Yampa River and two patches on the Green River. Two natural floods on the Yampa River and one controlled flood on the Green River between May 1998 and November 1999 allowed us to assess the effect of flooding on beaver herbivory. Independent of beaver herbivory, flow...
thumbnail
This U.S. Geological Survey data release provides data on spatial variations in tidal datums, tidal range, and nuisance flooding in Chesapeake Bay and Delaware Bay. Tidal datums are standard elevations that are defined based on average tidal water levels. Datums are used as references to measure local water levels and to delineate regions in coastal environments. Nuisance flooding refers to the sporadic inundation of low-lying coastal areas by the maximum tidal water levels during spring tides, especially perigean spring tides (also known as king tides). Nuisance flooding is independent of storm event flooding, and it represents a cumulative or chronic hazard. The data were obtained by following a consistent methodology...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) shapefiles based on wave-driven total water levels for the State Florida (the Florida Peninsula and the Florida Keys). There are 16 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years), the current scenario (base) and each of the restoration scenarios (structural_25, structural_05, and ecological_25).
An integrated high resolution tide and storm surge model has been developedfor all of coastal Alaska. The model uses the ADCIRC basin-to-channelscale unstructured grid circulation code. Tidal forcing from global tidal modelsand meteorological forcing from the Climate Forecast System Reanalysisare used. The model’s tidal solution has been validated at 121 shelf andnearshore stations. The model’s skill has been investigated for summer, falland winter storms. Sea ice has been incorporated through a parameterizedwind drag coefficient which modifies the air-sea drag under ice coverage.Three large storms with distinctly different ice coverages were chosen to exhibitthe effect of sea ice on the resulting storm surge. The...
Categories: Data, Publication; Types: Citation; Tags: Academics & scientific researchers, COASTAL AREAS, COASTAL AREAS, COASTAL PROCESSES, COASTAL PROCESSES, All tags...
This project used previously collected ShoreZone imagery to map nearly 1,600 km of coastline between Wales and Kotzebue. With additional mapping supported by the Arctic LCC and National Park Service, this effort completed the Kotzebue Sound shoreline, which now has been included in the state-wide ShoreZone dataset. The complete ShoreZone dataset for the region was used to conduct a coastal hazards analysis and create maps that identify areas undergoing rapid coastal erosion and areas that are sensitive to inundation by storm surge and sea level rise.​
Categories: Data; Tags: BEACHES, BEACHES, COASTAL AREAS, COASTAL AREAS, COASTAL LANDFORMS, All tags...
thumbnail
These data were created as part of the National Oceanic and Atmospheric Administration Coastal Services Center's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses.Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.csc.noaa.gov/slr...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian). For each island there are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of the U.S. Virgin Islands (the islands of Saint Croix, Saint John, and Saint Thomas). For each island there are 8 associated flood mask and flood depth shapefiles: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. BEWARE is a potentially powerful tool...


map background search result map search result map Dominant Soil Flooding Frequency Probability Class NOAA Sea Level Rise Data (1-6 ft) for Tijuana Slough NWR Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Nonindigenous aquatic species and potential spread after Hurricane Irma Carbon budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. (2005-2016) Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of the U.S. Virgin Islands (the islands of Saint Croix, Saint John, and Saint Thomas) Local and landscape-scale data describing patterns of coastal wetland loss in the Texas Chenier Plain, U.S.A., 2017-2018 DSWEmod surface water map composites generated from daily MODIS images - California Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the State of Florida for current and potentially restored coral reefs Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Surficial geologic map of the Eloy South Quadrangle, Pinal County, Arizona Surficial geologic map of the Eloy South Quadrangle, Pinal County, Arizona Local and landscape-scale data describing patterns of coastal wetland loss in the Texas Chenier Plain, U.S.A., 2017-2018 Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques) Carbon budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. (2005-2016) Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the State of Florida for current and potentially restored coral reefs Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Nonindigenous aquatic species and potential spread after Hurricane Irma DSWEmod surface water map composites generated from daily MODIS images - California NOAA Sea Level Rise Data (1-6 ft) for Tijuana Slough NWR Dominant Soil Flooding Frequency Probability Class Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands