Skip to main content
Advanced Search

Filters: Tags: floodplains (X)

153 results (95ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Digital flood-inundation polygon shapefiles for an 8.8-mile reach of the North Platte River, from 1.5 miles upstream of the Highway 92 bridge to 3 miles downstream of the Highway 71 bridge, were created by the U.S. Geological Survey (USGS) in cooperation with the Cities of Scottsbluff and Gering. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Platte River at Scottsbluff, Nebr. (station 06680500). Near-real-time stages at this streamgage may be obtained on the Internet from...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
The objective of this work is to delineate areas in the Upper Mississippi River System where the combined effects of water clarity and water level fluctuation conditions are not limiting the establishment and persistence of submersed aquatic vegetation. We note that other factors, such as herbivory or high current velocity may actively prevent establishment of submersed aquatic vegetation in areas of the Upper Mississippi River System, and that this analysis is based on physical constraints imposed by water clarity and water level fluctuation only. Total suspended solids information was collected by the Upper Mississippi River Restoration program, and water level information was collected by the United State Army...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Geological Survey (USGS) in cooperation with the city of Grandview, Missouri, assessed flooding of the Little Blue River at Grandview resulting from varying precipitation magnitudes and durations, and expected land cover changes. The precipitation scenarios were used to develop a library of flood-inundation maps that included a 3.5-mile reach of the Little Blue River and tributaries within and adjacent to the city. A hydrologic model of the upper Little Blue River Basin, and hydraulic model of a selected study reach of the Little Blue River and tributaries were constructed to assess streamflow magnitudes associated with simulated precipitation amounts and the resulting flood-inundation conditions. The...
thumbnail
The geospatial data presented here as ArcGIS layers denote landcover/landuse classifications to support field sampling efforts that occurred within the Cache Creek Settling Basin (CCSB) from 2010-2017. Manual photointerpretation of a National Agriculture Imagery Program (NAIP) dataset collected in 2012 was used to characterize landcover/landuse categories (hereafter habitat classes). Initially 9 categories were assigned based on vegetation structure (Vegtype1). These were then parsed into two levels of habitat classes that were chosen for their representativeness and use for statistical analyses of field sampling. At the coarsest level (Landcover 1), five habitat classes were assigned: Agriculture, Riparian, Floodplain,...
thumbnail
These datasets are raster files that represent water depths associated with each flood inundation boundary for 157 flooding scenarios in an 8-mile reach of the Papillion Creek near Offutt Air Force Base. These raster files were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Air Force, Offutt Air Force Base for use within the USGS Flood Inundation Mapping program. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgages...
thumbnail
This data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P9CIK9ZF. This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 7 to 24 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River extending from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex. to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter referred to as the “Utopia gage”)...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The Cache Creek Settling Basin (CCSB) is a 13.3 km2 leveed basin located at the terminal drainage of the Cache Creek watershed, immediately NE of the town of Woodland (Yolo County), California and approximately 18 km NW of Sacramento, California. The basin was constructed by the U.S. Army Corps of Engineers (completed in 1937 and modified in 1993) for the purpose of trapping suspended sediment transported from the upper Cache Creek watershed during high-flow events, thus preventing sediment from entering the Yolo Bypass, a larger downstream floodwater conveyance and agricultural zone. In addition to trapping suspended sediment, the CCSB also traps sediment-associated mercury (Hg), which is particularly elevated...
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan?eddy-dominated reach with the greatest decrease in stream power narrowed...
thumbnail
Digital flood-inundation maps for a 3.4-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather...
thumbnail
Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the White River at Noblesville, Ind., streamgage (USGS station number 03349000). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service...
thumbnail
Digital flood-inundation maps for an 8.8-mile reach of the North Platte River, from 1.5 miles upstream of the Highway 92 bridge to 3 miles downstream of the Highway 71 bridge, were created by the U.S. Geological Survey (USGS) in cooperation with the Cities of Scottsbluff and Gering. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Platte River at Scottsbluff, Nebr. (station 06680500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...


map background search result map search result map Shapefile of the flood-inundation maps for the White River at Noblesville, Indiana Model Archive of the flood-inundation maps for North Fork Salt Creek at Nashville, Indiana Habitat Maps for the Cache Creek Settling Basin, Yolo County, California Flood-inundation geospatial datasets for the North Platte River at Scottsbluff and Gering, Nebraska Shapefiles of the flood-inundation maps for the North Platte River at Scottsbluff and Gering, Nebraska Predicted number of years from 1993 - 2014 with conditions suitable for submersed aquatic vegetation based on light availability and water level fluctuations for the Upper Mississippi River System (lower submersed aquatic vegetation boundary elevation scenario) Geospatial data and hydraulic-model archive for evaluation of flood-inundation maps developed for a reach of the Little Blue River at Grandview, Missouri Shallow Sediment Geochemistry in a Mercury-Contaminated Multi-Habitat Floodplain: Cache Creek Settling Basin, Yolo County, California (version 2.0, August 2021) UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 04 UMRR LTRM 2020 4-Band Aerial Orthoimages - Illinois River Brandon Pool UMRR LTRM 2020 4-Band Aerial Orthoimages - Illinois River Starved Rock Pool UMRR LTRM 2020 4-Band Aerial Orthoimages - Mississippi River Pool 04 orthorgb100mp_20200811_102429_556_20307_22651 - - through - - orthorgb100mp_20200811_110026_427_36995_22800 UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 08 orthorgb100mp_20200822_110812_672_23891_29596 - - through - - orthorgb100mp_20200822_112953_572_37724_29720 orthorgb100mp_20200818_110124_058_18963_26806 - - through - - orthorgb100mp_20200818_113744_700_28931_26895 Geospatial and model dataset for flood-Inundation maps in a 10-mile reach of the Sabinal River and a 7-mile reach of the West Sabinal River near Utopia, Texas, 2021 Depth grids of flood inundation maps for Papillion Creek near Offutt Air Force Base, Nebraska UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 03 Model Archive of the flood-inundation maps for North Fork Salt Creek at Nashville, Indiana Geospatial data and hydraulic-model archive for evaluation of flood-inundation maps developed for a reach of the Little Blue River at Grandview, Missouri Habitat Maps for the Cache Creek Settling Basin, Yolo County, California Shallow Sediment Geochemistry in a Mercury-Contaminated Multi-Habitat Floodplain: Cache Creek Settling Basin, Yolo County, California (version 2.0, August 2021) Flood-inundation geospatial datasets for the North Platte River at Scottsbluff and Gering, Nebraska Depth grids of flood inundation maps for Papillion Creek near Offutt Air Force Base, Nebraska UMRR LTRM 2020 4-Band Aerial Orthoimages - Illinois River Brandon Pool UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 08 orthorgb100mp_20200822_110812_672_23891_29596 - - through - - orthorgb100mp_20200822_112953_572_37724_29720 UMRR LTRM 2020 4-Band Aerial Orthoimages - Illinois River Starved Rock Pool UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 03 orthorgb100mp_20200811_102429_556_20307_22651 - - through - - orthorgb100mp_20200811_110026_427_36995_22800 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 04 orthorgb100mp_20200818_110124_058_18963_26806 - - through - - orthorgb100mp_20200818_113744_700_28931_26895 UMRR LTRM 2020 4-Band Aerial Orthoimages - Mississippi River Pool 04 Predicted number of years from 1993 - 2014 with conditions suitable for submersed aquatic vegetation based on light availability and water level fluctuations for the Upper Mississippi River System (lower submersed aquatic vegetation boundary elevation scenario)