Skip to main content
Advanced Search

Filters: Tags: forests (X)

495 results (67ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
Estimates of the probability of mortality in whitebark pine from mountain pine beetles as determined from a logistic generalized additive model of the presence of mortality as functions of the number of trees killed last year, the percent whitebark pine in each cell, minimum winter temperature, average fall temperature, average April - Aug temperature, and cummulative current and previous year summer precipitation. Analysis was done at a 1 km grid cell resolution. Data are a list of points in comma separated text format. Point coordinates are the center of each 1 km grid cell.
thumbnail
The sky island forests of the southwestern United States are one of the most diverse temperate forest ecosystems in the world, providing key habitat for migrating and residential species alike. Black bear, bighorn sheep, mule deer, and wild turkey are just a few of the species found in these isolated mountain ecosystems that rise out of the desert landscape. However, recent droughts have crippled these ecosystems, causing significant tree death. Climate predictions suggest that this region will only face hotter and drier conditions in the future, potentially stressing these ecosystems even further. Simple models predict that vegetation will move to cooler and wetter locations in response to this warming. However,...
Concern over global environmental change and associated uncertainty has given rise to greater emphasis on fostering resilience through forest management. We examined the impact of standard silvicultural systems (including clearcutting, shelterwood, and selection) compared with unharvested controls on tree functional identity and functional diversity in three forest types distributed across the northeastern United States. Sites included the Argonne, Bartlett, and Penobscot Experimental Forests located in Wisconsin, New Hampshire, and Maine, respectively. We quantified functional trait means for leaf mass per area, specific gravity, maximum height, height achieved at 20 years, seed mass, drought tolerance, shade tolerance,...
thumbnail
UW_Olallie_photo_metadata & image files: These are the raw timelapse photographs. The date/time stamp is inaccurate for the camera deployed in the open (at the SNOTEL) due to a programming error. This timestamp is one day early (i.e., subtract 1 day from the timestamp when using these data). Also available is metadata for two timelapse cameras and their associated snow depth poles (two visible in each camera's field of view) deployed at Olallie Meadows SNOTEL during water year 2015. One camera was deployed in the open area that is the Olallie Meadows SNOTEL station (the snow pillow is in the field of view). The other camera was deployed in the adjacent forest, approximately 60 m to the southeast of the SNOTEL....
Abstract (from http://www.nature.com/articles/srep24441): The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity...
thumbnail
Wildfire, drought, and insects are reshaping forests in the Western United States in a manner that is being exacerbated by warming temperatures. Disturbance events such as these can significantly alter the amount of land that is covered by forest in an area or region. Consequently, changes in forest cover from disturbance can impact water runoff conditions leading to dangerous flooding, erosion, and water quality issues. These events can be costly for society. In response, many land managers are using forest thinning and prescribed burning practices to reduce disturbance impacts, especially those that are caused by high-severity wildfire. In contrast to the wealth of research on the advantages of forest thinning...
thumbnail
Forests are of tremendous ecological and economic importance. They provide natural places for recreation, clean drinking water, and important habitats for fish and wildlife. However, the warmer temperatures and harsher droughts in the west that are related to climate change are causing die-offs of many trees. Outbreaks of insects, like the mountain pine beetle, that kill trees are also more likely in warmer, drier conditions. To maintain healthy and functioning forest ecosystems, one action forest managers can take is to make management decisions that will help forests adapt to future climate change. However, adaptation is a process based on genetic change and few tools are currently available for managers to use...
Abstract (from SpringerOpen): Wildfires in the Pacific Northwest (Washington, Oregon, Idaho, and western Montana, USA) have been immense in recent years, capturing the attention of resource managers, fire scientists, and the general public. This paper synthesizes understanding of the potential effects of changing climate and fire regimes on Pacific Northwest forests, including effects on disturbance and stress interactions, forest structure and composition, and post-fire ecological processes. We frame this information in a risk assessment context, and conclude with management implications and future research needs. Large and severe fires in the Pacific Northwest are associated with warm and dry conditions, and such...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
In the Western U.S., approximately 65% of the water supply comes from forested regions with most of the water that feeds local rivers coming from snowmelt that originates in mountain forests. The Rio Grande headwaters (I.e. the primary water generating region of the Rio Grande river) is experiencing large changes to the landscape primarily from forest fires and bark beetle infestations. Already, 85% of the coniferous forests in this region have been affected by the bark beetle, and projections indicate greater changes will occur as temperatures increase. In this area, most of the precipitation falls as snow in the winter, reaches a maximum depth in the late spring, and melts away due to warmer temperatures by early...
thumbnail
Society makes substantial investments in federal, Tribal, state, and private programs to supplement populations of valued species such as stocking fish, planting trees, rebuilding oyster reefs, and restoring prairies. These important efforts require long-term commitment, but climate change is making environmental conditions less predictable and more challenging to navigate. Selection of species for population supplementation is often based on performance prior to release, and one or a few species may then be used for decades even as the environment is changing. When these species are propagated in large numbers, they can become the dominant population as well as genetically overtake any local adaptations. Therefore,...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016EF000479/full): Glacier hypsometry provides a first-order approach for assessing a glacier's response to climate forcings. We couple the Randolph Glacier Inventory to a suite of in situ observations and climate model output to examine potential change for the ∼27,000 glaciers in Alaska and northwest Canada through the end of the 21st century. By 2100, based on Representative Concentration Pathways (RCPs) 4.5–8.5 forcings, summer temperatures are predicted to increase between +2.1 and +4.6°C, while solid precipitation (snow) is predicted to decrease by −6 to −11%, despite a +9 to +21% increase in total precipitation. Snow is predicted to undergo a pronounced...
Abstract: P-band interferometric synthetic aperture radar (InSAR) data at 5 m resolution from Kahiltna Glacier, the largest glacier in the Alaska Range, Alaska, USA, show pronounced spatial variation in penetration depth, δ P. We obtained δ P by differencing X- and P-band digital elevation models. δ P varied significantly over the glacier, but it was possible to distinguish representative zones. In the accumulation area, δ P decreased with decreasing elevation from 18±3 m in the percolation zone to 10±4 m in the wet snow zone. In the central portion of the ablation area, a location free of debris and crevasses, we identified a zone of very high δ P (34±4 m) which decreased at lower elevations (23±3 m in bare ice...
Severe droughts cause widespread tree mortality and decreased growth in forests across the globe. Forest managers are seeking strategies to increase forest resistance (minimizing negative impacts during the drought) and resilience (maximizing recovery rates following drought). Limited experimental evidence suggests that forests with particular structural characteristics have greater capacity to resist change and or recover ecosystem function in the face of drought. However, the applicability of these results to practical forest conservation and management remains unclear. This project utilized an existing network of eight long-term, operational-scale, forest management experiments from Arizona to Maine to examine...
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
Historical and projected suitable habitat of 14 tree and shrub species a under CCSM4 GCMs from 2000 to 2099 was predicted to assess projected climate change impacts in forest communities of North Central U.S. We obtained presence/absence record of each species from Forest Inventory and Analysis (FIA) data. required ata. Historical tme period ranges from 1971 to 2000, and projected time period ranges from 2071 to 2100. Random Forest was used to project historical and future suitable habitat of all species across West U.S. using the Biomod2 software programmed in R environment. We adopted a climate change scenarios generated from the experiments conducted under fifth assessment of Coupled Model Intercomparison Project...


map background search result map search result map Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Probability of Whitebark Pine Mortality from Mountain Pine Beetle, 1997-2009, Northern Rockies Study Area Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Habitat Suitability of Dominant Tree and Shrub Species to Support Wolverine Management Across North West U.S. (1971-2100) Under Climate Change Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Climate-Adaptive Population Supplementation (CAPS) to Enhance Fishery and Forestry Outcomes The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Climate-Adaptive Population Supplementation (CAPS) to Enhance Fishery and Forestry Outcomes Probability of Whitebark Pine Mortality from Mountain Pine Beetle, 1997-2009, Northern Rockies Study Area The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Habitat Suitability of Dominant Tree and Shrub Species to Support Wolverine Management Across North West U.S. (1971-2100) Under Climate Change Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy