Skip to main content
Advanced Search

Filters: Tags: formicidae (X) > Extensions: Citation (X)

4 results (13ms)   

View Results as: JSON ATOM CSV
Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding...
Abstract (from http://www.esajournals.org/doi/abs/10.1890/11-2296.1): Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site,...
Abstract (from http://link.springer.com/article/10.1007%2Fs11252-014-0406-8): Urbanization is thought to lead to the loss of biodiversity both because of habitat disturbance and the increased abundance of invasive species. However, most studies of biodiversity in cities are conducted on a short time scale, usually less than 3 years, and so miss the long-term dynamics of communities inhabiting these ecosystems. Here we use a study performed in the early 70’s on North Carolina State University (Raleigh, USA) as a baseline to evaluate the long term effects of disturbance and introduced species on native ant communities. Ant species were sampled almost 40 years later using a variety of sampling techniques in order to...
Effects of climate warming on wild populations of organisms are expected to be greatest at higher latitudes, paralleling greater anticipated increases in temperature in these regions. Yet, these expectations assume that populations in different regions are equally susceptible to the effects of warming. This is unlikely to be the case. Here, we develop a series of predictive models for physiological thermal tolerances in ants based on current and future climates. We found that tropical ants have lower warming tolerances, a metric of susceptibility to climate warming, than temperate ants despite greater increases in temperature at higher latitudes. Using climatic, ecological and phylogenetic data, we refine our predictions...