Skip to main content
Advanced Search

Filters: Tags: genetic diversity (X) > Extensions: Citation (X)

5 results (79ms)   

View Results as: JSON ATOM CSV
The distribution and abundance of the greater sage-grouse (Centrocercus urophasianus) have declined dramatically, and as a result the species has become the focus of conservation efforts. We conducted a range-wide genetic survey of the species which included 46 populations and over 1000 individuals using both mitochondrial sequence data and data from seven nuclear microsatellites. Nested clade and STRUCTURE analyses revealed that, in general, the greater sage-grouse populations follow an isolation-by-distance model of restricted gene flow. This suggests that movements of the greater sage-grouse are typically among neighbouring populations and not across the species, range. This may have important implications if...
The rapid expansion of road networks has reduced connectivity among populations of flora and fauna. The resulting isolation is assumed to increase population extinction rates, in part because of the loss of genetic diversity. However, there are few cases where loss of genetic diversity has been linked directly to roads or other barriers. We analysed the effects of such barriers on connectivity and genetic diversity of 27 populations of Ovis canadensis nelsoni (desert bighorn sheep). We used partial Mantel tests, multiple linear regression and coalescent simulations to infer changes in gene flow and diversity of nuclear and mitochondrial DNA markers. Our findings link a rapid reduction in genetic diversity (up to...
thumbnail
The newly described Gunnison sage-grouse (Centrocercus minimus) is a species of concern for management because of marked declines in distribution and abundance due to the loss and fragmentation of sagebrush habitat. This has caused remaining populations to be unusually small and isolated. We utilized mitochondrial DNA sequence data and data from 8 nuclear microsatellites to assess the extent of population subdivision among Gunnison sage-grouse populations in southwestern Colorado and southeastern Utah, USA. We found a high degree of population structure and low amounts of gene flow among all pairs of populations except the geographically adjacent Gunnison and Curecanti populations. Population structure for Gunnison...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12850/abstract): Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout ( Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether...
Abstract: Accelerating climate change and other cumulative stressors create an urgent need to understand the influence of environmental variation and landscape features on the connectivity and vulnerability of freshwater species. Here, we introduce a novel modeling framework for aquatic systems that integrates spatially-explicit, individual-based, demographic and genetic (demogenetic) assessments with environmental variables. To show its potential utility, we simulated a hypothetical network of 19 migratory riverine populations (e.g., salmonids) using a riverscape connectivity and demogenetic model (CDFISH). We assessed how stream resistance to movement -- a function of water temperature, fluvial distance, and...


    map background search result map search result map Population genetics of Gunnison sage-grouse: implications for management Population genetics of Gunnison sage-grouse: implications for management