Skip to main content
Advanced Search

Filters: Tags: geographic information systems (X) > Extensions: Budget (X)

18 results (45ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
LCC funding allowed completion of this BLM initiative to develop a North Slope-wide cover type map and create a crosswalk that integrates all component cover type maps that comprise the larger overall North Slope cover type map.This map is the outcome of a multi-year project to produce a moderate resolution landcover base map for the North Slope of Alaska to serve as a primary base layer for long-term science and planning activities on the North Slope. New Landsat Thematic Mapper (TM) 30 meter resolution landcover maps were produced for the far western arctic, and for the area between the National Petroleum Reserve - Alaska (NPRA) and Arctic National Wildlife Refuge. In the NPRA, an existing land cover map from...
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
The Desert LCC identified the need for a Protected Areas spatial database that showed land ownership, management designations and conservation status for lands in the United States and Mexico. However, the existing Protected Areas database was found to be particularly prone to boundary and database errors that affected its potential use. This USGS project will develop a single, seamless, error-free Protected Areas dataset for the full geographic scope of the Desert LCC. This will involve acquiring numerous spatial layers from Federal, State, and NGO organizations which are responsible for administering and/or managing areas that have a designated protected status. Protected Area will be categorized as defined by...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
The most comprehensive historical aerial imagery of Alaska available to the public was collected as partof the Alaska High-Altitude Aerial Photography Program (AHAP) during 1978-1986. Recent studiesexamining coastline erosion have clearly demonstrated that the AHAP photographs are a valuablebaseline for detecting and quantifying change that occurred in Alaska in recent decades. Unfortunately,these data have been greatly underutilized due to challenges associated with orthorectifying the rawimagery and making it ready for users of Geographic Information Systems (GIS). By partnering with theAlaska Satellite Facility (ASF) at the University of Alaska Fairbanks the ALCC has made high-qualityAHAP orthomosaics of the...
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
The Arctic LCC and National Park Service has partnered together to complete a ShoreZone imagining and mapping project for the entire coastline, lagoons inclusive, from Point Hope to Wales in Northwestern Alaska. The ShoreZone Mapping System uses oblique aerial imagery and field data from ShoreStations to classify coastline habitats based on geological and biological attributes. ShoreZone products are made available to the public through the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Website.
thumbnail
The Arctic LCC created the Threatened Eider Geodatabase to serve as a repository for threatened eider distribution information. This database is intended to be a qualitative “first look” at where these two species of eider have been recorded and where surveys have been conducted. This dataset is intended for general planning and mapping purposes, it should NOT be used for deriving density estimates. Users are reminded that these data do not represent all locations within the geographic scope of this database that may be occupied by threatened eiders..
thumbnail
The Desert Landscape Conservation Cooperative (LCC) is a partnership formed and directed by resource management entities as well as interested public and private entities in the Mojave, Sonoran, and Chihuahuan Desert and montane sky island regions of the southwestern United States and northern Mexico. Desert LCC science depends on access to transboundary base datasets. Given the importance of vegetation such as grasslands and riparian vegetation in conservation science, a bi-national, landscape-scale vegetation data layer with classes relevant to Desert LCC research is crucial. One objective of this project is to investigate appropriate methodologies and landscape scales to create a Desert LCC binational land cover...
Categories: Data, Project; Tags: 2014, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
This project used historical climate records for Alaska and Western Canada to identify patterns in temperature and precipitation reflecting the distribution of biomes seen across this region today. These climate-biome models used downscaled climate data to help identify areas which were most vulnerable to change, and areas of “refugia” where the temperature and precipitation conditions will be most similar to what they are today. The results may help managers, landscape planners, conservationists and others; understand how dramatically the temperature and precipitation patterns are expected to change.
thumbnail
Shorebirds are among the most abundant and visible high-latitude vertebrates. Their ecology makes them particularly sensitive to climate change in the arctic. The current distribution of shorebirds on the Arctic Coastal Plain is poorly known because accurate data exist from just a few locations. The Arctic LCC has supported development of habitat selection models that combine bird survey data with remotely-sensed habitat maps to “fill in the gaps” where observations are sparse. In future phases, the distribution maps generated from these models could be ground-truthed and improved, and subsequently used as the basis from which to forecast future shorebird distribution for projected future climate scenarios.
thumbnail
Museum of Northern Arizona, Inc. will leverage tools previously developed by the Springs Stewardship Initiative to help resource managers in the southwestern U.S. collect, analyze, report upon, monitor and archive the complex and interrelated information associated with springs and spring-dependent species in the region. The information will be compiled and made readily available online. The Museum will further develop interactive online maps and climate change risk assessment tools of springs-dependent sensitive plant and animal species.
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: 2013, AL-05, AZ-01, AZ-02, AZ-03, All tags...
thumbnail
Water availability, distribution, quality and quantity are critical habitat elements for fish and other water-dependent species. Furthermore, the availability of water is also a pre-requisite for a number of human activities. The density of weather and hydrology observation sites on the North Slope is orders of magnitude less than in other parts of the U.S., making it difficult to document hydrologic trends and develop accurate predictive models where water is a key input. The information that does exist is scattered among many entities, and varies in format. This multi-year data rescue effort project brought together scarce and scattered hydrology data sets, including high-priority datasets held by the Bureau of...
thumbnail
Federal land managers, non-governmental organizations, and industry have been developing ecological land classifications at regional and landscape-level for Alaska to aid in ecosystem management. An ecoregion map that covers the entire state was produced by Nowacki et al. (2002). At the landscape level, ecological subsection mapping has been done for all National Park Service (NPS) and Forest Service lands in Alaska. In northern Alaska, a portion of the North Slope has been mapped at the ecological subsection level by industry (Jorgenson et al. 2003). In the Brooks Range, similar mapping has been done for National Parks and Preserves at Cape Krusenstern (Swanson 2001), Noatak (Jorgenson et al. 2002), and Gates of...
thumbnail
We used the United States National Grid to develop a sampling grid for monitoring programs in the Great Plains Landscape Conservation Cooperative, delineated by Bird Conservation Regions 18 and 19. Landscape Conservation Cooperatives are science based partnerships with the goal to inform and guide conservation at regional landscape levels. Developing a standardized sampling grid for a LCC is a new endeavor and is designed to reduce program costs, avoid repetition in sampling, and increase efficiency in monitoring programs. This is possible because the grid’s nationwide coverage, uniform starting point, and scalability allow researchers to expand their monitoring programs from a small, local level to a regional or...
thumbnail
Over the last 3 years, high-resolution LiDAR elevation data has been acquired for much of the northern coast of Alaska in support of the USGS Coastal and Marine Geology Program’s National Assessment of Shoreline Change project. Because of funding limitations, LiDAR data were not collected over most river deltas and embayments. Subsequent discussions with scientists and managers from both public agencies and private organizations indicated a need and desire to fill the gaps in the coastal elevation data set, specifically over the low-lying deltas and estuaries that provide important habitat for migratory birds and other wildlife. The Arctic LCC provided support to help cover costs associated with acquiring and processing...


    map background search result map search result map Integrated monitoring within BCR’s: Creating a wildlife monitoring grid for the GPLCC Development of Protected Areas Digital Spatial Data for the Desert LCC Developing a Geodatabase and Geocollaborative Tools to Support Springs and Springs-Dependent Species Management in the Desert LCC Desert LCC Land Cover Map Pilot Project Understanding Arctic Ecosystems: Ecological Mapping and Mapping Field Plot Database for the North Slope Threatened Eider Geodatabase for Northern Alaska Hydroclimatological Data Rescue, Data Inventory, Network Analysis, and Data Distribution Permafrost Database Development, Characterization, and Mapping for Northern Alaska WEAR ShoreZone and ShoreStation Surveys NPS Historical Orthomosaic, Digital Surface Model, and Shoreline Position for the Northern Alaska Coastline North Slope Alaska Admiralty Bay LiDAR Modeling Shorebird Distribution on the North Slope Predicting Future Potential Biomes for Alaska North Slope Land Cover Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska North Slope Alaska Admiralty Bay LiDAR WEAR ShoreZone and ShoreStation Surveys NPS Integrated monitoring within BCR’s: Creating a wildlife monitoring grid for the GPLCC Understanding Arctic Ecosystems: Ecological Mapping and Mapping Field Plot Database for the North Slope Threatened Eider Geodatabase for Northern Alaska Modeling Shorebird Distribution on the North Slope North Slope Land Cover Historical Orthomosaic, Digital Surface Model, and Shoreline Position for the Northern Alaska Coastline Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Developing a Geodatabase and Geocollaborative Tools to Support Springs and Springs-Dependent Species Management in the Desert LCC Hydroclimatological Data Rescue, Data Inventory, Network Analysis, and Data Distribution Development of Protected Areas Digital Spatial Data for the Desert LCC Desert LCC Land Cover Map Pilot Project Predicting Future Potential Biomes for Alaska