Skip to main content
Advanced Search

Filters: Tags: geospatial datasets (X)

1,249 results (695ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows, which are the largest volcanic hazards for Mount Adams and Mount Baker. Evaluating the hazards associated with such alteration is difficult because much of the alteration is obscured by ice and its depth extent is unknown. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks are identified with helicopter electromagnetic and magnetic measurements at Mount Baker and Mount Adams. High resolution magnetic and electromagnetic...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
Floating transient electromagnetic (FloaTEM) data were acquired on the Upper Delaware River during December 2018. During the survey, approximately 10 line-kilometers were collected in the Upper Delaware River, near USGS boring 12008-14 (https://webapps.usgs.gov/GeoLogLocator/#!/search) near Barryville, New York study area. Data were collected by members of the U.S. Geological Survey, Hydrogeophysics Branch, New England Water Science Center, and the National Park Service UPDE. FloaTEM data acquired along the Delaware River in Sullivan County, in New York, were collected to test a new continuous water-borne transient electromagnetic data collection platform, and to characterize the subsurface resistivity structure....
thumbnail
Water quality in the Barnegat Bay estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Bay watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events. The scale of the estuary and the scope of the problems within it required a regional approach to understand and model water circulation within the bay and adjacent ocean. A continuous elevation surface (terrain model) integrating...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
These digital images were taken at select locations over the Potomac River using 3DR Solo unmanned aircraft systems (UAS) in October 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
The Wetland Reserve Program (WRP) is a voluntary program administered by the NRCS. It provides technical and financial assistance to private landowners and Tribes to restore, protect, and enhance wetlands in exchange for retiring eligible land from agriculture. For a site to be a wetland eligible for restoration, it must be in a zone with sustained or frequent flooding for a period of 7 consecutive days on average at least once every 2 years (a value termed the 7MQ2). This study calculated the 7MQ2 flows for all the U.S. Geological Survey streamgages within the selected study reaches. These flows were related to the stage discharge tables for each streamgage and a corresponding elevation was determined. By use of...
thumbnail
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the main inflows to Lake Powell. These new data are intended to improve water budget management decisions that affect the natural and recreational resources of the reservoir. Multibeam echosounder bathymetry and...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Antelope Canyon, BOR, Bullfrog, Bullfrog Bay, Bureau of Reclamation, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...


map background search result map search result map Mount Adams Electromagnetic and Magnetic Data Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Potential Wetland Extent Along Wildcat Creek Between USGS Gaging Stations 03333450 and 03334000 Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Coastal wetlands from Jamaica Bay to western Great South Bay, New York points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Development: Development delineation: Parker River, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 Development: Development delineation: Cape Lookout, NC, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Metompkin Island, VA, 2014 High-resolution digital elevation model of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 8, 2016 Point cloud of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 Low-altitude aerial imagery from unmanned aerial systems (UAS) at select locations over the Potomac River, October 2019 Floating transient electromagnetic (FloaTEM) surveys in the Delaware River near Barryville, New York Polygon boundaries for source data of a continuous terrain model for water circulation studies: Barnegat Bay, New Jersey (Esri polygon shapefile, Geographic, WGS 84) Chirp seismic reflection data from the Edgetech 512i collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS field activity 2018-001-FA (shotpoints point shapefile, survey trackline shapefile, PNG profile images, and SEG-Y trace data). Multibeam Echosounder, Reson T-20P tracklines collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (Esri polyline shapefile, GCS WGS 84) Point cloud of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 High-resolution digital elevation model of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 8, 2016 Development: Development delineation: Cape Lookout, NC, 2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Metompkin Island, VA, 2014 Mount Adams Electromagnetic and Magnetic Data Floating transient electromagnetic (FloaTEM) surveys in the Delaware River near Barryville, New York Chirp seismic reflection data from the Edgetech 512i collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS field activity 2018-001-FA (shotpoints point shapefile, survey trackline shapefile, PNG profile images, and SEG-Y trace data). Multibeam Echosounder, Reson T-20P tracklines collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (Esri polyline shapefile, GCS WGS 84) Coastal wetlands from Jamaica Bay to western Great South Bay, New York Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 Potential Wetland Extent Along Wildcat Creek Between USGS Gaging Stations 03333450 and 03334000 Low-altitude aerial imagery from unmanned aerial systems (UAS) at select locations over the Potomac River, October 2019 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 Polygon boundaries for source data of a continuous terrain model for water circulation studies: Barnegat Bay, New Jersey (Esri polygon shapefile, Geographic, WGS 84) Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution)