Skip to main content
Advanced Search

Filters: Tags: habitat connectivity (X) > Types: Shapefile (X)

23 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This data set contains links that are important to each species' habitat network. Those important links are scored based on the percent currently under protection status, projected change in climate suitability by the middle of the 21st century, and projected change in percent urbanized by the middle of the 21st century. Important links were identified from all links in the networks of each species based on their Integral Index of Connectivity (dIIC). Any links with dIIC scores > 0.9 or which connected to nodes with dIIC > 0.9 were retained here as "important" links.
thumbnail
nv_lvl6_coarsescale: Nevada hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl8_coarsescale: Wyoming hierarchical cluster level 8 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl1_finescale: Wyoming hierarchical cluster level 1 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl4_moderatescale: Wyoming hierarchical cluster level 4 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result...
thumbnail
wy_lvl5_coarsescale: Wyoming hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
nv_lvl7_coarsescale: Nevada hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
nv_lvl2_finescale: Nevada hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl6_coarsescale: Wyoming hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl9_coarsescale: Wyoming hierarchical cluster level 9 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
The banding data provides a comprehensive list of where and when each of the 21 golden eagles were captured, tagged (all satellite-tagged, some also radio-tagged) and deployed. The banding data is organized into a spreadsheet (Banding_Records.csv) that provides basic information on each bird as well as any notes about recaptures or deaths. The Capture_Sheets.pdf is a supplemental document that provides more detailed biological and spatiotemporal information about 15 of the tagged individuals. Individual golden eagles can be identified across the three datasets with their unique and consistent PTT numbers.
thumbnail
The satellite data consist of 9,253 estimated locations of 21 golden eagles (Aquila chrysaetos) that were satellite-tagged in either east-central Idaho (Salmon, Idaho) or southwestern Idaho (Snake River National Conservation Area) and tracked between 1993 and 1997 via the Argos satellite system. The raw eagle tracking data provided by Argos were filtered one time using a version of the Douglas Argos-Filter Algorithm and converted into XLS spreadsheet form. This preservation project preserved the geospatial and satellite information from the XLS spreadsheet and released it in shapefile format (Satellite_Data.shp) and CSV format (Satellite_Data.csv). Each tagged bird in this dataset has a unique PTT number that is...
thumbnail
Of the 21 golden eagles satellite-tagged in Salmon, Idaho and Snake River National Conservation Area, 10 were also radio-tagged with tail-mounted very high frequency (VHF) transmitters to allow for behavioral observations between 1993 and 1994. The observed data were originally processed as a DIF file. The Data at Risk preservation project transformed the original DIF file data into CSV format and created a shapefile from the geospatial points. The observed data shapefile (Observed_Data.shp) provides the 682 estimated locations of the golden eagles and all behavioral observations taken in the field. The information provided in the Observed dataset can be related to the other two datasets via each bird’s unique PTT...
thumbnail
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
In partnership with South Atlantic Landscape Conservation Cooperative members, we assessed current and projected connectivity for three species that inhabit bottomland hardwoods throughout the southeastern US: black bear (Ursus americanus), Rafinesque’s big-eared bat (Corynorhinus rafinesquii), and timber rattlesnake (Crotalus horridus). For each species, we mapped important habitat connections between core patches of habitat using three different modeling approaches (Connectivity Analysis Toolkit (CAT), Circuitscape, and Linkage Mapper) that incorporated three types of resistance layers (expert opinion, niche modeling, and empirical data for the black bear only). The result was 21 sets of important connections,...
thumbnail
nv_lvl5_coarsescale: Nevada hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl10_coarsescale: Wyoming hierarchical cluster level 10 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in...
thumbnail
nv_lvl3_moderatescale: Nevada hierarchical cluster level 3 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in...


map background search result map search result map Key landscape connections under urban growth Important links for Black bear, Rafinesque's big-eared bat, and timber rattlesnake Satellite Data, Golden Eagles (Aquila chrysaetos), Western North America, 1993-1997 Observational Data, Golden Eagles (Aquila chrysaetos), Idaho and Oregon, United States, 1993-1994 Banding Data, Golden Eagles (Aquila chrysaetos), Idaho, United States, 1993-1996 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 3 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 10 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 9 (Wyoming), Interim Observational Data, Golden Eagles (Aquila chrysaetos), Idaho and Oregon, United States, 1993-1994 Banding Data, Golden Eagles (Aquila chrysaetos), Idaho, United States, 1993-1996 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 10 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 9 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 3 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Nevada), Interim Key landscape connections under urban growth Important links for Black bear, Rafinesque's big-eared bat, and timber rattlesnake Satellite Data, Golden Eagles (Aquila chrysaetos), Western North America, 1993-1997