Skip to main content
Advanced Search

Filters: Tags: historic (X)

95 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
A layer of Historic Forts that occur throughout the state of Wyoming,
thumbnail
This metadata references the polygonal ARC/INFO GIS cover showing the current and historic distribution of potential habitat, or range, of the Greater Sage-grouse (Centrocercus urophasianus) and Gunnison Sage-grouse (Centrocercus minimus) in Western North America. This data was initially researched and compiled by Dr. Michael A. Schroeder, research biologist for the Washington State Department of Fish and Wildlife. The initial draft of current and historic range data was mapped and submitted to state, federal, or provincial natural resource agencies and other experts for review, comment, and editing. The final product represents the best available science and expert review available at the time of compilation. ...
thumbnail
This set of 4 rasters shows mean annual temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This metadata references the polygonal ARC/INFO GIS cover showing the current and historic distribution of potential habitat, or range, of the Greater Sage-grouse (Centrocercus urophasianus) and Gunnison Sage-grouse (Centrocercus minimus) in Western North America. This data was initially researched and compiled by Dr. Michael A. Schroeder, research biologist for the Washington State Department of Fish and Wildlife. The initial draft of current and historic range data was mapped and submitted to state, federal, or provincial natural resource agencies and other experts for review, comment, and editing. The final product represents the best available science and expert review available at the time of compilation. ...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This map shows all the places conservation elements. Some of the places included exhibit high biodiversity or ecological and cultural value. This map also shows other managed areas from the Protected Areas Database, as well as those that are excluded. Associated input datasets are also included; they relate to biodiversity, special areas, and development. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics...
thumbnail
Climate projection data were downloaded from the Climatewizard application for the coastal region for the Gulf of Mexico. Climate projection data represent the monthly, seasonal, and yearly mean for the time period of 2000-2050 for the following variables: AET:PET ratio, Moisture deficit, Moisture surplus, PET, Precipitation, Temperature, Rainfall Anomaly, and Standard Precipitation Index. In addition, models representing change in the average mean from period of (1961-1990) is available for each of the variables. Each projected variable is modeled using three different emission scenarios High (A1), Medium (A1B) and Low (B1).
This dataset describes Native American Ceded Tribal lands in Washington State. Boundary lines have been digitized from a variety of digital data sources including 1:100,000 streams for boundaries described in treaties as following a stream or river, 1:24k Water Resource Inventory Areas (WRIA), Watershed Administrative Unit (WAU) and Hydrologic Unit Code (HUC) boundaries for boundaries referred to in treaties as 'divide', 'summit' or 'between the waters of', 1:100,000 Major Public Lands (for current reservation areas), 10 meter DEM and 7.5 minute USGS digital Quad maps (to define ridgelines and 'divide' where WRIA, WAU or HUC boundaries don't exist) and NAIP orthophoto imagery (to get a feel for what a questionable...
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This dataset represents all of the Historical Trails in Wyoming, including those designated as National Historic Trails. These data have been collected using methods ranging from screen digitizing at a large scale to collecting trails with aGlobal Positioning System (GPS). In general, the main trail system(Oregon/California/Mormon Pioneer/Pony Express) is the most accurate, falling somewhere between the 24K and 100K mapping standards. Still, these trails represent only an approximation of the centerline of the trails system and should be used only as a preliminary planning tool. Consultation with the appropriate Field Office will still be necessary for any specific project.
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
Mendenhall and others (1916) published depth-to-water data compiled in 1910 for all known wells in the San Joaquin Valley, California. Data for the 3,429 wells having depth-to-water of greater than zero feet were used to construct an interpolated depth-to-water surface for the entire SJV. This map represents groundwater levels in approximately 1910, prior to extensive development of the groundwater system. A depth-to-water contour map with contour lines of 5, 10, 15, and 25 meters below land surface was then drawn from this raster surface.
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) mean temperature (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...


map background search result map search result map Historic Forts in Wyoming Historical Trails for Wyoming State Tribal Lands - Current and Historic Mean Temperature of the coldest month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Current Distribution of the Sage-grouse in North America Historic Distribution of the Sage-grouse in North America Average and Change Rainfall Anomaly for Emissions Scenarios A2, A1B, and B1 for the Gulf of Mexico Historic Depth-to-Water, San Joaquin Valley, California, 1910 BLM REA MBR 2010 Places Historic Depth-to-Water, San Joaquin Valley, California, 1910 Historic Forts in Wyoming Historical Trails for Wyoming BLM REA MBR 2010 Places Average and Change Rainfall Anomaly for Emissions Scenarios A2, A1B, and B1 for the Gulf of Mexico Current Distribution of the Sage-grouse in North America Historic Distribution of the Sage-grouse in North America Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble)