Skip to main content
Advanced Search

Filters: Tags: hydraulic model (X) > Date Range: {"choice":"year"} (X)

9 results (32ms)   

View Results as: JSON ATOM CSV
thumbnail
Background / Problem – The City of Ithaca, Tompkins County, N.Y., is in the process of developing a flood management plan for the streams that flow through the City. Flooding in the City is caused by a variety of distinct and sometimes interconnected reasons. Flooding often is a result of snowmelt and rain during the winter and spring. Slow ice-melt and breakup can lead to ice jams and subsequent flooding. Flash floods are produced by summer thunderstorms. All of these flood types are compounded by two factors: the storm-sewer system in the City and the elevation of Cayuga Lake. The storm sewers drain to the nearby streams at points below the tops of the streambanks. Because the streamward ends of the storm sewers...
thumbnail
This data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P9CIK9ZF. This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 7 to 24 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex., at the upstream boundary of the study reach, to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter...
thumbnail
This data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P9CIK9ZF. This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 7 to 24 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River extending from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex. to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter referred to as the “Utopia gage”)...
thumbnail
This data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P9CIK9ZF. This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 7 to 24 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River extending from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex. to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter referred to as the “Utopia gage”)...
thumbnail
This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 11 to 28 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River extending from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex. to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter referred to as the “Utopia gage”) and 7-mile reach of the West Sabinal River were created by the USGS in cooperation with the Bandera County...
thumbnail
This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 11 to 28 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River extending from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex. to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter referred to as the “Utopia gage”) and 7-mile reach of the West Sabinal River were created by the USGS in cooperation with the Bandera County...
thumbnail
This data release documents the digital data used to produce flood-inundation maps for a range of gage heights (stages) for the Sabinal River near Utopia, Tex. The simulated flood-inundation maps correspond to a range in stage from 11 to 28 feet (ft) at U.S. Geological Survey (USGS) streamgage 08197970 Sabinal River at Utopia, Tex. at intervals of 0.5-ft. The maps were created for a 10-mile reach of the Sabinal River from USGS streamgage 08197936 Sabinal River below Mill Creek near Vanderpool, Tex., at the upstream boundary of the study reach, to USGS streamgage 08197970 Sabinal River at Utopia, Tex. (hereinafter referred to as the “Utopia gage”), at the downstream boundary of the study reach, and 7-mile reach of...
The “Reconnecting Floodplains and Restoring Green Space as a Management Strategy to Minimize Risk and Increase Resilience in the Context of Climate and Landscape Change” project explores green infrastructure opportunities to manage flows, connections, and watersheds in order to improve both flood protection and ecosystem services. This project’s research specifically investigates how restoring floodplains would impact human welfare and environmental conservation. Its research objectives are addressed in two parts: 1) developing a hydraulic model to illustrate how changes in floodplain management may impact flooding along the Connecticut River, and 2) developing a geo-spatial model that demonstrates the distribution...
thumbnail
In support of a preliminary analysis performed by New York State Department of Environmental Conservation (NYSDEC) that found elevated nutrient levels along selected reaches of the Mohawk River, one-dimensional, unsteady, hydraulic and water-quality models using HEC-RAS and HEC-RAS Nutrient Simulation Module I (version 5.0.3) were developed by the U.S. Geological Survey (USGS) for the 127-mile reach of the Mohawk River between Rome and Cohoes, New York. The models were designed to accurately simulate within-channel flow conditions for this highly regulated, control structure dense river reach. The models were calibrated for the study period of May through September 2016 using best available streamflow, temperature,...


    map background search result map search result map Water-Surface Profiles and Discharges for Four Stream Reaches, Ithaca,  Tompkins County N.Y. HEC-RAS hydraulic, temperature, and nutrient models for the Mohawk River between Rome and Cohoes, New York Geospatial and model dataset for flood-Inundation maps in a 10-mile reach of the Sabinal River and a 7-mile reach of the West Sabinal River near Utopia, Texas, 2021 Flood-inundation depth grid files for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Two-dimensional unsteady state HEC–RAS model to create flood-inundation maps for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Geospatial and model dataset for flood-Inundation maps in a 10-mile reach of the Sabinal River and a 7-mile reach of the West Sabinal River near Utopia, Texas, 2021 Flood-inundation depth grid files for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Two-dimensional unsteady state HEC–RAS model to create flood-inundation maps for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Water-Surface Profiles and Discharges for Four Stream Reaches, Ithaca,  Tompkins County N.Y. Geospatial and model dataset for flood-Inundation maps in a 10-mile reach of the Sabinal River and a 7-mile reach of the West Sabinal River near Utopia, Texas, 2021 Flood-inundation depth grid files for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Two-dimensional unsteady state HEC–RAS model to create flood-inundation maps for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Geospatial and model dataset for flood-Inundation maps in a 10-mile reach of the Sabinal River and a 7-mile reach of the West Sabinal River near Utopia, Texas, 2021 Flood-inundation depth grid files for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 Two-dimensional unsteady state HEC–RAS model to create flood-inundation maps for selected reaches of the Sabinal River and the West Sabinal River near Utopia, Texas, 2021 HEC-RAS hydraulic, temperature, and nutrient models for the Mohawk River between Rome and Cohoes, New York