Skip to main content
Advanced Search

Filters: Tags: hydrologic processes (X)

40 results (52ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This part of the Data Release contains the raster representation of the water-level altitude and water-level change maps developed every 5 years from 1980-2015 for the upper Rio Grande Focus Area Study. The input point data used to generate the water-level altitude maps can be found in the "Groundwater level measurement data used to develop water-level altitude maps in the upper Rio Grande Alluvial Basins" child item of this data release. These digital data accompany Houston, N.A., Thomas, J.V., Foster, L.K., Pedraza, D.E., and Welborn, T.L., 2020, Hydrogeologic framework, groundwater-level altitudes, groundwater-level changes, and groundwater-storage changes in selected alluvial basins of the upper Rio Grande...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...
thumbnail
Parameter values for the Precipitation Runoff Modeling System (PRMS) using the National Hydrologic Modeling (NHM) infrastructure. The contents of the attached zip folder are a direct download from the USGS bitbucket repository titled National Hydrologic Model Parameter Database (NhmParamDb) (https://my.usgs.gov/bitbucket/projects/MOWS/repos/nhmparamdb/browse). The NhmParamDb is stored using a Git version control system, which tracks modifications to the master dataset through 'commits'. Each commit has a unique code to allow for retroactive identification of any given component of the repository. The specific attributes of the download contained in this release are: Date: May 8, 2017 Commit: 6ccc41d5688 Filename:...
thumbnail
The Air Force Research Laboratory (AFRL) is about 7 kilometers southwest of Boron, California, and covers 320 square kilometers of Edwards Air Force Base. The AFRL consists of 12 facilities for testing full-size rocket engines, engine components, and liquid and solid propellants. The historical release of contaminants from rocket test stands, evaporation ponds, burn pits, catch basins, and leaking waste-collection tanks has contaminated groundwater in the AFRL. Groundwater aquifers near the AFRL are mostly restricted to fractured granitic bedrock, but previous studies indicate that groundwater and associated contaminants have moved into alluvium to the north and northwest. The U.S. Geological Survey (USGS) and the...
thumbnail
Electrical resistivity tomography (ERT) surveys were done northwest of the Air Force Research Laboratory (AFRL) at Edwards Air Force Base. ERT surveys were done at four locations in May through June of 2018 to refine the understanding of the bedrock-alluvial aquifer transition zone downgradient from the AFRL. The ERT technique injects direct-current electricity with known voltage and current into the earth using a series of electrodes and measures the resulting resistivity. This technique is generally limited to investigations of aquifer properties less than 100 meters below land surface. Data from other geophysical techniques co-located with the ERT data, including time-domain electromagnetics and horizontal-to-vertical...
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
The files contained on this site are for use with the National Hydrologic Model (NHM) for the Precipitation Runoff Modeling System (PRMS), developed by the Modeling of Watershed Systems (MoWS) group of the U.S. Geological Survey. PRMS is a daily deterministic watershed-scale model (Markstrom and others, 2015), and can be used at a conterminous United States (CONUS) extent with on the Geospatial Fabric (Viger and Bock, 2014) in the NHM infrastructure (Regan and others, 2018). The NHM-PRMS is the sum of three parts: the source code, parameter values, geospatial fabric (Regan and others, in press). These components are used to generate the simlation output files. Child items of this page include all or parts of these...
thumbnail
This data release contains output and components of the initial conterminous United States (CONUS) application of the Precipitation-Runoff Modeling System (PRMS) as implemented in the National Hydrologic Model (NHM) infrastructure (Regan et al, 2018). The PRMS version 5.0.0 hydrologic simulation code was used with the accompanying parameter files in the NHM infrastructure to produce the attached output files. Model input climate drivers include climate data derived from the Daymet gridded data set version 2 (Thornton et al., 2014) with values spatially-distributed to the HRUs using the USGS Geo Data Portal (https://cida.usgs.gov/gdp/; Blodgett et al., 2011). The parameter values are maintained in the National Hydrologic...
thumbnail
This data release contains six zipped raster files of aerial thermal infrared (TIR) images of the South Loup River, North Loup River, and Dismal River named as LowerSouthLoup_AerialTIRImage_1m_2015.zip, MiddleSouthLoup_AerialTIRImage_50cm_2015.zip, UpperSouthLoup_AerialTIRImage_30cm_2015.zip, LowerDismal_AerialTIRImage_1m_2016.zip, UpperDismal_AerialTIRImage_50cm_2015.zip, and NorthLoup_AerialTIRImage_1m_2016.zip. This data release also includes a Reconn_Temperature_Gradient_X_sections.zip file which contains three ASCII comma separated values files with stream reconnaissance data which include stream temperature, streambed temperature, and vertical hydraulic gradient. This dataset also includes a Focused_discharge_points.zip...
thumbnail
This data release supports the study by Sexstone and others (2019) and contains simulation output from a hydrological modeling experiment using a specific calibration of the conterminous United States (CONUS) application of the Precipitation-Runoff Modeling System (PRMS) (Hay, 2019) as implemented in the National Hydrologic Model (NHM) infrastructure (Regan and others, 2018). The by hydrologic response unit (byHRU) calibrated, baseline version of the NHM-PRMS (Hay, 2019) was used to evaluate the sensitivity of simulated runoff to the representation of snow depletion curves (SDCs) within the NHM-PRMS across the CONUS. The model experiment consisted of seven NHM-PRMS model simulations using the calibrated NHM-PRMS...
thumbnail
Climate change information simulated by global climate models is downscaled using statistical methods to translate spatially course regional projections to finer resolutions needed by researchers and managers to assess local climate impacts. Several statistical downscaling methods have been developed over the past fifteen years, resulting in multiple datasets derived by different methods. We apply a simple monthly water-balance model (MWBM) to demonstrate how the differences among these datasets result in disparate projections of snow loss and future changes in runoff. We apply the MWBM to six statistically downscaled datasets for 14 general circulation models (GCMs) from the Climate Model Intercomparison Program...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
Borehole nuclear magnetic resonance (NMR) data were collected by the U.S. Geological Survey (USGS) at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify unfrozen water content and soil properties at select sites in and around the lake edge. In September 2019, NMR data were collected within two 2.3 m deep boreholes adjacent to the East and North perpendicular electrical resistivity survey lines. Manual permafrost-probe measurements of thaw depths were also collected. These two boreholes were logged a second time in late March 2020. Additional one-time NMR measurements of liquid water content were collected in September 2019 within the lakebed sediments (0-25 cm depth) in approximately 2.5...
thumbnail
Water availability in the upper Rio Grande Basin is dependent on winter and monsoon season precipitation. Consecutive years of drought and above average temperatures have diminished water supply and increased demand for water in this region. The increasing gap between water supply and demand is cause for concern. Climate projections for the southwestern and south central United States suggest that temperatures will continue to increase, affecting seasonal precipitation and water availability. To better manage current water supply and prepare for possible future changes, water managers need projections of future streamflow and landscape conditions that may affect future water supply. The project researchers are...
thumbnail
Alluvial basin boundaries in the Upper Rio Grande Basin (URGB) were a needed dataset for the groundwater component of the URGB Focus Area Study (FAS). A literature and data search revealed not all of the alluvial fill basins existed in a digital format that could be imported and used in a Geographic Information System (GIS). Available resources such as georeferenced report figures, digital elevation models (DEMs), principal aquifer dataset, surficial geology, and structural features, such as faults, were used to aid in defining the alluvial basin boundaries. An Esri ArcGIS geodatabase was created to house the final digitized dataset of the following alluvial basins: San Luis, Espanola, Socorro, La Jencia, San Marcial,...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa, Alamosa County, All tags...
thumbnail
The Cahuilla Valley and Terwilliger Valley groundwater basins, 9-006 and 7-026 respectively (California Department of Water Resources 2016) located approximately 25 miles southwest of Palm Springs, are the sole-source for groundwater supply for the rural disadvantaged community and two Native American Tribes, the Ramona Band of Cahuilla and the Cahuilla. The characteristics and sustainable yield of the Cahuilla Valley and Terwilliger Valley groundwater basins are not well understood and are threatened by increasing water use and potential changes in water sustainability related to climate change. Previous USGS studies of the Cahuilla-Terwilliger Valley groundwater basins defined the thicknesses and characteristics...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...


map background search result map search result map USGS NHM-PRMS Releases National Hydrologic Model Parameter Database: 2017-05-08 Download Alluvial basin boundary data associated with the hydrogeologic, geologic, and water-level data for the groundwater component of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and Texas, United States and Chihuahua, Mexico 2017 Application of the National Hydrologic Model Infrastructure with the Precipitation-Runoff Modeling System (NHM-PRMS), Uncalibrated Version Aerial thermal infrared imagery, focused groundwater discharge points, water temperature, streambed temperature, and vertical hydraulic gradient data collected along the South Loup, Dismal, and North Loup Rivers, Nebraska, 2014-16 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Analyzing the Response of Waterflow to Projected Climate Conditions in the Upper Rio Grande Basin Data Release for The dependence of hydroclimate projections in snow-dominated regions of the western U.S. on the choice of statistically downscaled climate data Surface geophysics investigations at Edwards Air Force Research Laboratory, Antelope Valley, California, 2018 Electrical Resistivity Tomography Data at Edwards Air Force Research Laboratory, Antelope Valley, California, 2018 Data release in support of runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model Groundwater-level altitude and groundwater-level change maps developed for the groundwater component of the upper Rio Grande Focus Area Study Electrical Resistivity Tomography Data Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Electrical Resistivity Tomography Data Surface geophysics investigations at Edwards Air Force Research Laboratory, Antelope Valley, California, 2018 Electrical Resistivity Tomography Data at Edwards Air Force Research Laboratory, Antelope Valley, California, 2018 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Aerial thermal infrared imagery, focused groundwater discharge points, water temperature, streambed temperature, and vertical hydraulic gradient data collected along the South Loup, Dismal, and North Loup Rivers, Nebraska, 2014-16 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Groundwater-level altitude and groundwater-level change maps developed for the groundwater component of the upper Rio Grande Focus Area Study Alluvial basin boundary data associated with the hydrogeologic, geologic, and water-level data for the groundwater component of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and Texas, United States and Chihuahua, Mexico 2017 Analyzing the Response of Waterflow to Projected Climate Conditions in the Upper Rio Grande Basin Application of the National Hydrologic Model Infrastructure with the Precipitation-Runoff Modeling System (NHM-PRMS), Uncalibrated Version Data release in support of runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model National Hydrologic Model Parameter Database: 2017-05-08 Download Data Release for The dependence of hydroclimate projections in snow-dominated regions of the western U.S. on the choice of statistically downscaled climate data