Skip to main content
Advanced Search

Filters: Tags: image analysis (X) > partyWithName: U.S. Geological Survey (X)

46 results (34ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
A validation assessment of Land Cover Monitoring, Assessment, and Projection Collection 1.1 annual land cover products (1985–2019) for the Conterminous United States was conducted with an independently collected reference data set. Reference data land cover attributes were assigned by trained interpreters for each year of the time series (1984–2018) to a reference sample of 24,971 randomly-selected Landsat resolution (30m x 30m) pixels. The interpreted land cover attributes were crosswalked to the LCMAP annual land cover classes: Developed, Cropland, Grass/Shrub, Tree Cover, Wetland, Water, Snow/Ice and Barren. Validation analysis directly compared reference labels with annual LCMAP land cover map attributes by...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This dataset contains a thematic [classified] image derived from supervised classification of WorldView-3 satellite imagery. This data release contains a geospatial thematic (raster) image derived from a supervised classification of WorldView-3 satellite imagery obtained during 2020–21. Arundo donax (Arundo cane, giant reed, or Carrizo cane), is an invasive bamboo-like perennial grass most common to riparian areas throughout the southwestern United States. Because it displaces native riparian vegetation, Arundo cane has greatly disrupted the health of riparian ecosystems in the southwestern United States and northern Mexico during the past 50 years. Arundo cane also has created border security problems along the...
thumbnail
This dataset contains a thematic [classified] image derived from supervised classification of WorldView-3 satellite imagery. This data release contains a geospatial thematic (raster) image derived from a supervised classification of WorldView-3 satellite imagery obtained during 2020–21. Arundo donax (Arundo cane, giant reed, or Carrizo cane), is an invasive bamboo-like perennial grass most common to riparian areas throughout the southwestern United States. Because it displaces native riparian vegetation, Arundo cane has greatly disrupted the health of riparian ecosystems in the southwestern United States and northern Mexico during the past 50 years. Arundo cane also has created border security problems along the...
thumbnail
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Pointclouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...
thumbnail
This dataset contains a thematic [classified] image derived from supervised classification of WorldView-3 satellite imagery. This data release contains a geospatial thematic (raster) image derived from a supervised classification of WorldView-3 satellite imagery obtained during 2020–21. Arundo donax (Arundo cane, giant reed, or Carrizo cane), is an invasive bamboo-like perennial grass most common to riparian areas throughout the southwestern United States. Because it displaces native riparian vegetation, Arundo cane has greatly disrupted the health of riparian ecosystems in the southwestern United States and northern Mexico during the past 50 years. Arundo cane also has created border security problems along the...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Pointclouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...
thumbnail
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Point clouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...
thumbnail
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using a UAS-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Ricoh GR camera in DNG format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Point clouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Consumptive use (CU) of water is an important factor for determining water availability and groundwater storage. Many regional stakeholders and water-supply managers in the Upper Rio Grande Basin have indicated CU is of primary concern in their water-management strategies, yet CU data is sparse for this area. This polygon feature class, which represents irrigated acres for 2015, is a geospatial component of the U.S. Geological Survey National Water Census Upper Rio Grande Basin (URGB) focus area study's effort to improve quantification of CU in parts of New Mexico, west Texas, and northern Chihuahua. These digital data accompany Ivahnenko, T.I., Flickinger, A.K., Galanter, A.E., Douglas-Mankin, K.R., Pedraza, D.E.,...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...
thumbnail
A validation assessment of Land Cover Monitoring, Assessment, and Projection Collection 1.2 annual land cover products (1985–2018) for the Conterminous United States was conducted with an independently collected reference dataset. Reference data land cover attributes were assigned by trained interpreters for each year of the time series (1984–2018) to a reference sample of 26,971 Landsat resolution (30m x 30m) pixels. These pixels were selected from a sample frame of all pixels in the ARD grid system which fell within the map area (Dwyer et al., 2018). Interpretation used the TimeSync reference data collection tool which visualizes Landsat images and Landsat data values for all usable images in the time series (1984–2018)...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Multispectral remote sensing data acquired by Landsat 8 Operational Land Imager (OLI) sensor were analyzed using an automated technique to generate surficial mineralogy and vegetation maps of the conterminous western United States. Six spectral indices (e.g. band-ratios), highlighting distinct spectral absorptions, were developed to aid in the identification of mineral groups in exposed rocks, soils, mine waste rock, and mill tailings across the landscape. The data are centered on the western U.S. and cover portions of Texas, Oklahoma, Kansas, the Canada-U.S. border, and the Mexico-U.S. border during the summers of 2013 – 2014. Methods used to process the images and algorithms used to infer mineralogical composition...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Arizona, California, Canada, Colorado, Idaho, All tags...
thumbnail
These data were compiled to provide satellite remote sensing observations of landcover in the vicinity of wetlands fed by geothermal springs in Dixie Meadows, Nevada, USA. Objectives of the study were to map landcover of water, vegetation, and soil between October 5, 2015, and January 21, 2022, using available imagery from the Sentinel-2 mission. The U.S. Geological Survey's Southwest Biological Science Center (SBSC) and Grand Canyon Monitoring and Research Center (GCMRC) processed 110 Sentinel-2 satellite images representing bottom of atmosphere surface reflectance and classified them within Google Earth Engine (GEE) using threshold values of the Green Normalized Difference Vegetation Index (gNDVI) and its inverse...
Categories: Data; Tags: Bureau of Land Management Lands, Churchill County, Department of Defense Lands, Dixie Meadows, Dixie Valley, All tags...
thumbnail
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Point clouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...
thumbnail
Presented here is a point cloud produced by the U.S. Geological Survey (USGS) from historical U.S. Air Force vertical aerial imagery, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was downloaded from USGS Eros Data Center and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Point clouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...


map background search result map search result map 2015 Irrigated acres feature class for the Upper Rio Grande Basin, New Mexico and Texas, United States and Chihuahua, Mexico Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-05-27 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-26 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-07 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-21 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2018-01-29 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 1967-10-18 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2012–2013 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2013–2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2010 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2013–2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2010–2011 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2012 Digital map of iron sulfate minerals, other mineral groups, and vegetation of the western United States derived from automated analysis of Landsat 8 satellite data Land cover classification data for wetland complexes at Dixie Meadows, Nevada from October 2015 to January 2022 Arundo donax (Arundo Cane) Image Classification along the Rio Grande in Webb County, Texas, June 30, 2020 Arundo donax (Arundo Cane) Image Classification along the Rio Grande in Webb County, Texas, September 26, 2020 Arundo donax (Arundo Cane) Image Classification along the Rio Grande in Webb County, Texas, May 07, 2021 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 1967-10-18 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-05-27 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-26 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-07 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-21 Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2018-01-29 Land cover classification data for wetland complexes at Dixie Meadows, Nevada from October 2015 to January 2022 Arundo donax (Arundo Cane) Image Classification along the Rio Grande in Webb County, Texas, September 26, 2020 Arundo donax (Arundo Cane) Image Classification along the Rio Grande in Webb County, Texas, May 07, 2021 Arundo donax (Arundo Cane) Image Classification along the Rio Grande in Webb County, Texas, June 30, 2020 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2013–2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2010 2015 Irrigated acres feature class for the Upper Rio Grande Basin, New Mexico and Texas, United States and Chihuahua, Mexico Digital map of iron sulfate minerals, other mineral groups, and vegetation of the western United States derived from automated analysis of Landsat 8 satellite data