Skip to main content
Advanced Search

Filters: Tags: in situ (X)

4 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
These data were compiled to examine how climate change affects biocrust recovery from both physical and climate-induced disturbance. Objective(s) of our study were to uncover the trajectory of biological soil crust communities and soil stability following disturbance and under warming. These data represent biological soil crust surveys under 5 treatments at three sites. These data were collected at three sites: Arches National Park, Canyonlands National Park and Castle Valley. Data collection for a physical disturbance experiment where annual human-trampling occurred at the sites in Arches and Canyonlands began in 1996 and was concluded in 2018. Data collection for a 13-year full-factorial in situ climate manipulation...
Tags: 20 point-intercept frames, Arches National Park, Canyonlands National Park, Castle Valley, Climatology, All tags...
thumbnail
The use of field-deployable fluorescence sensors to better understand dissolved organic matter concentrations and composition has grown immensely in recent years. Applications of these sensors to critical monitoring efforts have also grown to encompass post-fire monitoring, wastewater tracking, and use as a proxy for various contaminants. Despite the growth, it is well known that these sensors are subject to various interferences and require corrections for temperature, turbidity, and concentration effects. Although temperature corrections are widely applicable across sensors, the turbidity and concentration corrections can be site-specific and/or sensor-specific. The corrections can even be subject to changes in...
thumbnail
Here, we present the results supporting Table 2 in Field Techniques for Fluorescence Measurements Targeting Dissolved Organic Matter, Hydrocarbons, and Wastewater in Environmental Waters: Principles and Guidelines for Instrument Selection, Operation and Maintenance, Quality Assurance, and Data Reporting. Table 2 shows comparisons from an Aqualog 800 benchtop fluorometer standardized to quinine sulfate equivalents (QSE) with excitation (ex) and emissions (em) equivalent to fluorescence of dissolved organic matter (fDOM) sensors from multiple manufacturers. Data are reported from two standard reference materials (SRM) and the mean, minimum, and maximum from 76 environmental samples. No replicates were collected for...
thumbnail
Here, we present data supporting temporal variability and sources of PFAS in the Rio Grande through an arid urban area using high-frequency sampling and novel samplers. Data are compiled into two tables: 1) full fluorescence spectra in vectorized format, and 2) summary file of concentrations of total dissolved nitrogen and commonly extracted field-based sensor arrays. Data are reported from two sites at Rio Grande, New Mexico during a 24-hour collection period. Two field blanks, one field replicate, and two laboratory replicates are reported for 26 environmental samples.


    map background search result map search result map Data and software code from two long-term experiments (1996-2011 and 2005-2018) at three sites on the Colorado Plateau of North America Comparisons from an Aqualog Fluorometer Standardized to Quinine Sulfate Equivalents (QSE) with Excitation (ex) and Emissions (em) Equivalent to Fluorescence of Dissolved Organic Matter (fDOM) Sensors from Multiple Manufacturers Fluorescence sensor measurements in sediment suspensions to evaluate turbidity corrections Laboratory fluorescence and total dissolved nitrogen measurements for surface water samples collected from the Rio Grande during a 24-hr time period near Albuquerque, New Mexico Data and software code from two long-term experiments (1996-2011 and 2005-2018) at three sites on the Colorado Plateau of North America Laboratory fluorescence and total dissolved nitrogen measurements for surface water samples collected from the Rio Grande during a 24-hr time period near Albuquerque, New Mexico Fluorescence sensor measurements in sediment suspensions to evaluate turbidity corrections Comparisons from an Aqualog Fluorometer Standardized to Quinine Sulfate Equivalents (QSE) with Excitation (ex) and Emissions (em) Equivalent to Fluorescence of Dissolved Organic Matter (fDOM) Sensors from Multiple Manufacturers