Skip to main content
Advanced Search

Filters: Tags: invasive (X) > partyWithName: Earth Resources Observation and Science (EROS) Center (X)

10 results (44ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset provides a near-real-time estimate of 2018 herbaceous annual cover with an emphasis on annual grass (Boyte and Wylie. 2016. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38:278-284.) This estimate was based on remotely sensed enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) data gathered through July 1, 2018. This is the second iteration of an early estimate of herbaceous annual cover for 2018 over the same geographic area. The previous dataset used eMODIS NDVI data gathered through May 1 (https://doi.org/10.5066/P9KSR9Z4). The pixel values for this most recent estimate ranged from 0 to100% with...
thumbnail
The dataset provides a near real time estimation of 2020 herbaceous mostly annual fractional cover predicted on July 1st with an emphasis on annual exotic grasses Historically, similar maps were produced at a spatial resolution of 250m (Boyte et al. 2019 https://doi.org/10.5066/P96PVZIF., Boyte et al. 2018 https://doi.org/10.5066/P9RIV03D.), but starting this year we are mapping at a 30m resolution (Pastick et al. 2020 doi:10.3390/rs12040725). This dataset was generated using in situ observations from Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; weekly composites of harmonized Landsat and Sentinel-2 (HLS) data (https://hls.gsfc.nasa.gov/); relevant environmental, vegetation,...
thumbnail
The dataset provides a spatially explicit estimate of 2019 herbaceous annual percent cover predicted on May 1st with an emphasis on annual grasses. The estimate is based on the mean output of two regression-tree models. For one model, we include, as an independent variable amongst other independent variables, a dataset that is the mean of 17-years of annual herbaceous percent cover (https://doi.org/10.5066/F71J98QK). This model's test mean error rate (n = 1670), based on nine different randomizations, equals 4.9% with a standard deviation of +/- 0.15. A second model was developed that did not include the mean of 17-years of annual herbaceous percent cover, and this model's test mean error rate (n = 1670), based...
thumbnail
The dataset provides an estimate of 2020 herbaceous mostly annual fractional cover predicted on May 1st with an emphasis on annual exotic grasses Historically, similar maps were produced at a spatial resolution of 250m (Boyte et al. 2019 https://doi.org/10.5066/P9ZEK5M1., Boyte et al. 2018 https://doi.org/10.5066/P9KSR9Z4.), but we are now mapping at a 30m resolution (Pastick et al. 2020 doi:10.3390/rs12040725). This dataset was generated using in situ observations from Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; weekly composites of harmonized Landsat and Sentinel-2 (HLS) data (https://hls.gsfc.nasa.gov/); relevant environmental, vegetation, remotely sensed, and geophysical...
thumbnail
The dataset provides an estimate of 2018 herbaceous annual percent cover predicted on May 1st with an emphasis on annual grasses. The pixel values range from 0 to100 with an overall mean value of 8.32 and a standard deviation of +/-11.93. The model's test mean error rate (n = 1670), based on nine different randomizations, equals 4.9% with a standard deviation of +/- 0.15. This dataset was generated by integrating ground-truth measurements of annual herbaceous percent cover with 250-m spatial resolution eMODIS NDVI satellite derived data and geophysical variables into regression-tree software. The geographic coverage includes the Great Basin, the Snake River Plain, the state of Wyoming, and contiguous areas. We applied...
thumbnail
We integrated 250-m enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) with land cover, biogeophysical (e.g., soils, topography) and climate data into regression-tree software (Cubist®). We integrated this data to create a time series of spatially explicit predictions of herbaceous annual vegetation cover in sagebrush ecosystems, with an emphasis on annual grasses. Annual grass cover in sagebrush ecosystems is highly variable year-to-year because it is strongly dependent on highly variable weather patterns, particularly precipitation timing and totals. Annual grass cover also reflects past disturbances and management decisions. We produced 17 consecutive...
thumbnail
This dataset provides a near-real-time estimate of 2019 herbaceous annual cover with an emphasis on annual grass (Boyte and Wylie. 2016. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38:278-284.) This estimate was based on remotely sensed enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) data gathered through June 24, 2019. This is the second iteration of an early estimate of herbaceous annual cover for 2019 over the same geographic area. The previous dataset used eMODIS NDVI data gathered through April 28, 2019 (https://doi.org/10.5066/P9ZEK5M1). The pixel values for this most recent estimate ranged from 0 to100%...
thumbnail
Yellow sweetclover (Melilotus officinalis; YSC), an invasive biennial legume, bloomed throughout the Northern Great Plains (NGP) following greater-than-average precipitation during 2018-2019. YSC can increase nitrogen (N) levels and potentially cause broad changes in the composition of native plant species communities. There is little knowledge of the drivers behind its spatiotemporal variability, including conditions causing significant widespread blooms across western South Dakota (SD). We aimed to develop a generalized prediction model to map the relative abundance of YSC in suitable habitats across rangelands of western SD for the recent sweet clover year 2019. The following research questions were asked: 1....
thumbnail
This dataset provides a near-real-time estimate of 2017 herbaceous annual cover with an emphasis on annual grass (Boyte and Wylie. 2016. Near-real-time cheatrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38:278-284.) This estimate was based on remotely sensed enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) data gathered through June 19, 2017. This is the second iteration of an early estimate of herbaceous annual cover for 2017 over the same geographic area. The previous dataset used eMODIS NDVI data gathered through May 1 (https://doi.org/10.5066/F7445JZ9). The pixel values for this most recent estimate ranged from 0 to100% with...
thumbnail
The dataset provides an estimate of 2017 herbaceous annual percent cover predicted on May 1st with an emphasis on annual grasses. The pixel values range from 0 to100 with an overall mean value of 7.1 and a standard deviation of +/-10.5. The model's test mean error rate (n = 1670), based on nine different randomizations, equals 4.9% with a standard deviation of +/- 0.15. This dataset was generated by integrating ground-truth measurements of annual herbaceous percent cover with 250-m spatial resolution eMODIS NDVI satellite derived data and geophysical variables into regression-tree software. The geographic coverage includes the Great Basin, the Snake River Plain, the state of Wyoming, and contiguous areas. We applied...


    map background search result map search result map Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2017) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem (June 19, 2017) A Time Series of Herbaceous Annual Cover in the Sagebrush Ecosystem Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2018) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2018 Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2019) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2019 Early estimates of Annual Exotic Herbaceous Fractional Cover in the Sagebrush Ecosystem, USA, May 2020 Near real time estimation of annual exotic herbaceous fractional cover in the sagebrush ecosystem 30m, USA, July 2020 Biophysical drivers for predicting the distribution and abundance of invasive yellow sweet clover in the Northern Great Plains Biophysical drivers for predicting the distribution and abundance of invasive yellow sweet clover in the Northern Great Plains Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2017) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem (June 19, 2017) A Time Series of Herbaceous Annual Cover in the Sagebrush Ecosystem Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2018) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2018 Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2019) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2019 Early estimates of Annual Exotic Herbaceous Fractional Cover in the Sagebrush Ecosystem, USA, May 2020 Near real time estimation of annual exotic herbaceous fractional cover in the sagebrush ecosystem 30m, USA, July 2020