Skip to main content
Advanced Search

Filters: Tags: lakebed characteristics (X)

31 results (89ms)   

View Results as: JSON ATOM CSV
thumbnail
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the main inflows to Lake Powell. These new data are intended to improve water budget management decisions that affect the natural and recreational resources of the reservoir. Multibeam echosounder bathymetry and...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Antelope Canyon, BOR, Bullfrog, Bullfrog Bay, Bureau of Reclamation, All tags...
thumbnail
Ten groundwater piezometers and lake-level stilling wells were deployed in Upper Klamath Lake (UKL), Oregon during May through October 2017. Piezometers and stilling wells were deployed in pairs so that water levels could be measured relative to a common measuring point (MP) at each location. Piezometers and stilling wells were instrumented with recording pressure transducers. Discrete depth-to-water check measurements were collected at all ten locations at about two-week intervals using a calibrated electric water-level tape to verify and, if necessary, correct the continuous data record. This data set contains discrete depth-to-water check measurements.
thumbnail
This data set contains continuous measured groundwater and lake water-level data and continuous derived vertical hydraulic gradient (VHG) data. Water-levels were measured in paired groundwater piezometers and lake-level stilling wells with submerged pressure transducers during May through October 2017 at nine locations in Upper Klamath Lake (UKL), Oregon. Continuous water-level data was barometrically compensated, corrected for shifts, and converted to values of water level below MP using discrete depth to water-level measurements. Continuous groundwater and lake water-level data were used to calculate vertical hydraulic gradient (VHG). Any data that were determined to be unrepresentative (effects from waves or...
thumbnail
The erosion and active transport of legacy mine tailings (called “stamp sands”) are impacting native fish species and aquatic habitats on a shallow water rocky reef complex along the Keweenaw Peninsula of Michigan called Buffalo Reef. Stamp sands are spreading from an old mill site at the Town of Gay and settling on the reef. Multiple surveys have documented the underwater migration of toxic, metal-rich stamp sands and progressive burial of areas of hard/complex lakefloor, such as cobble fields. The finer-grained, muddy fraction of the mine tailings has been winnowed by waves and currents and transported to unknown locations in deeper waters offshore. High-resolution geophysical mapping of the bay in 2018 revealed...
thumbnail
These metadata describe bathymetric data collected during a May 2019 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image.
thumbnail
Acoustic seabed classification (ASC) is an important method for understanding landscape-level physical and biological patterns in the aquatic environment. Bottom habitats in the Laurentian Great Lakes are poorly mapped to date, and will require a variety of contributors and data sources to complete. We repurposed a long-term split-beam echosounder dataset gathered for purposes of fisheries assessment to estimate lakebed properties utilizing unsupervised classification of echo return data. We extracted first echo properties and analyzed lakebed hardness and roughness to define and map three statistically supported lakebed classes revealed through cluster analysis. Our results indicate coherent and logical class boundaries,...
thumbnail
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef, a large...
thumbnail
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef, a large...
thumbnail
Ten groundwater piezometers and lake-level stilling wells were deployed in Upper Klamath Lake (UKL), Oregon during May through October 2017. Piezometers and stilling wells were deployed in pairs so that water levels could be measured relative to a common measuring point (MP) at each location. Piezometers were installed in the lakebed sediment, with screens from 3.92 to 4.92 feet below the sediment-water interface (lakebed). Stilling wells were screened open to the lake. Continuous water-level data were collected at nine locations using submerged pressure transducers. One barometric pressure transducer was deployed so that continuous water-level data could be barometrically compensated. Discrete depth-to-water check...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buffalo Reef, CMHRP, Coastal and Marine Hazards and Resources Program, DOI, Department of the Interior, All tags...
thumbnail
The erosion and active transport of legacy mine tailings (called “stamp sands”) are impacting native fish species and aquatic habitats on a shallow water rocky reef complex along the Keweenaw Peninsula of Michigan called Buffalo Reef. Stamp sands are spreading from an old mill site at the Town of Gay and settling on the reef. Multiple surveys have documented the underwater migration of toxic, metal-rich stamp sands and progressive burial of areas of hard/complex lakefloor, such as cobble fields. The finer-grained, muddy fraction of the mine tailings has been winnowed by waves and currents and transported to unknown locations in deeper waters offshore. High-resolution geophysical mapping of the bay in 2018 revealed...
thumbnail
These metadata describe bathymetric data collected during a September 2021 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image.
thumbnail
In September 2018, the USGS Woods Hole Coastal and Marine Science Center (WHCMSC), in collaboration with the US Army Corps of Engineers (USACE), conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands”, were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present day. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches and is steadily...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buffalo Reef, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
Rockdale County Department of Water Resources (RCDWR) has a mission to update estimates of the reservoir storage capacity of Randy Poynter Lake in northern Georgia and to assess recent sedimentation. The U.S. Geological Survey (USGS) Lower Mississippi-Gulf Water Science Center (LMGWSC) collected bathymetric data from November 29, 2022 to December 4, 2022 in support of RCDWR’s mission. Bathymetric data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel, similar to methodologies described by Huizinga (2017). The final dataset of lakebed elevations (RandyPoynter2022_points.shp)...
thumbnail
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the main inflows to Lake Powell. These new data are intended to improve water budget management decisions that affect the natural and recreational resources of the reservoir. Multibeam echosounder bathymetry and...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...
thumbnail
The erosion and active transport of legacy mine tailings (called “stamp sands”) are impacting native fish species and aquatic habitats on a shallow water rocky reef complex along the Keweenaw Peninsula of Michigan called Buffalo Reef. Stamp sands are spreading from an old mill site at the Town of Gay and settling on the reef. Multiple surveys have documented the underwater migration of toxic, metal-rich stamp sands and progressive burial of areas of hard/complex lakefloor, such as cobble fields. The finer-grained, muddy fraction of the mine tailings has been winnowed by waves and currents and transported to unknown locations in deeper waters offshore. High-resolution geophysical mapping of the bay in 2018 revealed...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...
Categories: Data; Tags: Buffalo Reef, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...


map background search result map search result map High-resolution geophysical data collected in Lake Powell, Utah-Arizona, U.S. Geological Survey Field Activity 2017-049-FA Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Depth-to-water data and calculated vertical hydraulic gradient at the sediment-water interface in Upper Klamath Lake, Oregon, 2017 Discrete groundwater and lake depth-to-water check-measurement data, Upper Klamath Lake, Oregon, 2017 Continuous depth-to-water data and calculated vertical hydraulic gradient at the sediment-water interface in Upper Klamath Lake, Oregon, 2017 Multibeam bathymetric data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum, 2-m resolution) Sediment sample locations and analysis collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA (Microsoft Excel file) Multibeam bathymetric trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Bathymetric data for Whiskeytown Lake, May 2019 (ver. 2.0, July 2021) Bathymetric data for Whiskeytown Lake, September 2020 Multibeam backscatter data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 16N, NAD 83, 1-m resolution) Multibeam trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Locations and grain-size analysis results of sediment samples collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using the USGS MiniSEABOSS (CSV, GCS WGS 84) Geotagged lakebed images and their locations collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using the USGS MiniSEABOSS (JPEG images, point shapefile; GCS WGS 84) High-resolution (0.5m) backscatter from the Stamp Sands of Lake Superior collected using a Norbit iWBMSh multibeam echosounder during 2021 (GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88) High-resolution (1m) bathymetry from the Stamp Sands of Lake Superior collected using a Norbit iWBMSh multibeam echosounder during 2021 (GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88) High-resolution (1m) backscatter from the Stamp Sands of Lake Superior collected using a Norbit iWBMSh multibeam echosounder during 2021 (GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88) Lakebed features extracted from single-beam sonar in two Laurentian Great Lakes Bathymetric and supporting data for estimation of reservoir storage capacity and geomorphic change detection analysis from a multibeam bathymetric survey of Randy Poynter Lake, Rockdale County, Georgia Bathymetric and supporting data for estimation of reservoir storage capacity and geomorphic change detection analysis from a multibeam bathymetric survey of Randy Poynter Lake, Rockdale County, Georgia Geotagged lakebed images and their locations collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using the USGS MiniSEABOSS (JPEG images, point shapefile; GCS WGS 84) Locations and grain-size analysis results of sediment samples collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using the USGS MiniSEABOSS (CSV, GCS WGS 84) High-resolution (0.5m) backscatter from the Stamp Sands of Lake Superior collected using a Norbit iWBMSh multibeam echosounder during 2021 (GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88) High-resolution (1m) bathymetry from the Stamp Sands of Lake Superior collected using a Norbit iWBMSh multibeam echosounder during 2021 (GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88) High-resolution (1m) backscatter from the Stamp Sands of Lake Superior collected using a Norbit iWBMSh multibeam echosounder during 2021 (GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88) Bathymetric data for Whiskeytown Lake, May 2019 (ver. 2.0, July 2021) Bathymetric data for Whiskeytown Lake, September 2020 Sediment sample locations and analysis collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA (Microsoft Excel file) Multibeam backscatter data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 16N, NAD 83, 1-m resolution) Multibeam bathymetric trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Multibeam bathymetric data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum, 2-m resolution) Depth-to-water data and calculated vertical hydraulic gradient at the sediment-water interface in Upper Klamath Lake, Oregon, 2017 Discrete groundwater and lake depth-to-water check-measurement data, Upper Klamath Lake, Oregon, 2017 Continuous depth-to-water data and calculated vertical hydraulic gradient at the sediment-water interface in Upper Klamath Lake, Oregon, 2017 Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) High-resolution geophysical data collected in Lake Powell, Utah-Arizona, U.S. Geological Survey Field Activity 2017-049-FA Lakebed features extracted from single-beam sonar in two Laurentian Great Lakes