Skip to main content
Advanced Search

Filters: Tags: landslide (X) > Categories: Data (X)

84 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
The files consist of two types: tabulated data files and graphical map files. Data files consist of six .csv files, representing six experiment dates (2016_06_14, 2016_16_15, 2016_18_15, 2016_16_21, 2016_16_22, 2016_16_23). Each of these files contains multiple columns of data, with each column representing either a time measurement or the value of a physical quantity measured at that time (e.g., flow depth, pore pressure, normal stress, etc.). Map files consist of six .pdf files, each representing an experiment date listed above. The maps show the thickness of the sediment deposited onto the runout pad after each experiment. Sediment thickness was determined using photogrammetery software from Adam Technology.
thumbnail
The West Hills of Portland, in the southern Tualatin Mountains, trend northwest along the west side of Portland, Oregon. These silt-mantled mountains receive significant wet-season precipitation and are prone to sliding during wet conditions, occasionally resulting in significant property damage or casualties. In an effort to develop a baseline for interpretive analysis of the groundwater response to rainfall, an automated monitoring system was installed in 2006 to measure rainfall, pore-water pressure, soil suction, soil-water potential, and volumetric water content at 15-minute intervals. The data show a cyclical pattern of groundwater and moisture content levels—wet from October to May and dry between June and...
thumbnail
Currently, there are many datasets describing landslides caused by individual earthquakes, and global inventories of earthquake-induced landslides (EQIL). However, until recently, there were no datasets that provide a comprehensive description of the impacts of earthquake-induced landslide events. In this data release, we present an up-to-date, comprehensive global database containing all literature-documented earthquake-induced landslide events for the 249-year period from 1772 through August 2021. The database represents an update of the catalog developed by Seal et al. (2020), which summarized events through March 2020 and was based on the catalog developed by Nowicki Jessee et al. (2020). The revised catalog...
thumbnail
This data release supports interpretations of field-observed root distributions within a shallow landslide headscarp (CB1) located below Mettman Ridge within the Oregon Coast Range, approximately 15 km northeast of Coos Bay, Oregon, USA. (Schmidt_2021_CB1_topo_far.png and Schmidt_2021_CB1_topo_close.png). Root species, diameter (greater than or equal to 1 mm), general orientation relative to the slide scarp, and depth below ground surface were characterized immediately following landsliding in response to large-magnitude precipitation in November 1996 which triggered thousands of landslides within the area (Montgomery and others, 2009). The enclosed data includes: (1) tests of root-thread failure as a function of...
thumbnail
This inventory was originally created by Gorum and others (2014) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.2 17 km N of Puerto Aisen, Chile earthquake that occurred on 21 April 2007 at 23:45:56 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory...
thumbnail
This inventory was originally created by Xu and others (2014) describing the landslides triggered by the M 5.9 Gansu, China earthquake, also known as the Minxian - Zhangxian earthquake, that occurred on 21 July 2013 at 23:45:56 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata...
thumbnail
This inventory was originally created by the Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) describing the landslides triggered by the M 7.7 San Miguel, El Salvador earthquake that occurred on 13 January 2001 at 17:33:32 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and...
thumbnail
This inventory was originally created by Zhao (2021) describing the landslides triggered by the M 7.5 Palu, Indonesia earthquake that occurred on 28 September 2018 at 10:02:45 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
Data in this release record ground-surface positions obtained during post-disaster emergency response following the 2014 catastrophic Oso (SR 530) landslide, Snohomish County, Washington. Global Positioning System (GPS) data were collected using three USGS GPS-seismometer spider units deployed adjacent to (OSO1), upslope of (OSO2), and on (OSO3) the landslide (see image for locations) for about five weeks. Details of the post-disaster response as well as the spider units are described in the accompanying publication. Positions were determined in near real-time relative to a base-station GPS receiver (OSO0) located on stable ground less than 2 km from the landslide using static, differential GPS processing techniques....
thumbnail
A hydrologic monitoring network was installed to investigate landslide hazards affecting the railway corridor along the eastern shore of Puget Sound between Seattle and Everett, near Mukilteo, Washington. During the summer of 2015, the U.S. Geological Survey installed instrumentation at four sites to measure rainfall and air temperature every 15 minutes. Two of the four sites are installed on contrasting coastal bluffs, one landslide scarred and one vegetated. At these two sites, in addition to rainfall and air temperature, volumetric water content, pore pressure, soil suction, soil temperature (via hydrologic instrumentation), and barometric pressure were measured every 15 minutes. The instrumentation was designed...
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
thumbnail
This inventory was originally created by Basharat and others (2014) describing the landslides triggered by the M 7.6 Kashmir, Pakistan earthquake that occurred on 8 October 2005 at 03:50:40 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Yagi and others (2009) describing the landslides triggered by the M6.9 Eastern Honshu, Japan earthquake that occurred on 2008-06-13 at 23:43:45 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Harp and others (2016) describing the landslides triggered by the M 7.0 Haiti earthquake that occurred on 12 January 2010 at 21:53:10 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
This inventory describes the landslides triggered by the M6.5 Friuli, Italy earthquake that occurred on 1976-05-06 at 20:00:11 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
thumbnail
This inventory was originally created by Harp and others (1984) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.5 Mammoth Lakes, California earthquake that occurred on 25 May 1980 at 19:44:50 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and...
thumbnail
This data release contains model output from simulations presented in the associated Open-File Report (Barnhart and others, 2021). In this report, we present model results from four simulations (scenarios C-290, NC-290, C-689, NC-689, Table 1) of hypothetical rapid movement of landslides into adjacent fjord water at Barry Arm, Alaska using the D-Claw model (George and Iverson, 2014; Iverson and George, 2014). The basis for the four scenarios is described in Barnhart and others (2021). Table 1. Summary of four considered scenarios including key simulation input parameter values. Simulation input parameters Scenario name and description NC-290 C-290 NC-689 C-689 Symbol Units Description Smaller,...
thumbnail
This inventory was originally created by Tanyas and others (2022) describing the landslides triggered by the M 7.5 Papua New Guinea earthquake that occurred on 25 February 2018 at 17:44:44 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...


map background search result map search result map Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Results of Hydrologic Monitoring of a Landslide-Prone Hillslope in Portland's West Hills, Oregon, 2006-2017 Harp and others (2016) Gorum and others (2014) Basharat and others (2014) Harp and others (1984) Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) Sensor data from debris-flow experiments conducted in June, 2016, at the USGS debris-flow flume, HJ Andrews Experimental Forest, Blue River, Oregon Results of Hydrologic Monitoring on Landslide-prone Coastal Bluffs near Mukilteo, Washington Xu and others (2014) Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Yagi and others (2009) Martino and others (2014) GPS monitoring data from spider units on the post-disaster 2014 Oso landslide, Snohomish County, Washington Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska Root thread strength, landslide headscarp geometry, and observed root characteristics at the monitored CB1 landslide, Oregon, USA Tanyas and others (2022) Zhao (2021) Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Root thread strength, landslide headscarp geometry, and observed root characteristics at the monitored CB1 landslide, Oregon, USA Sensor data from debris-flow experiments conducted in June, 2016, at the USGS debris-flow flume, HJ Andrews Experimental Forest, Blue River, Oregon GPS monitoring data from spider units on the post-disaster 2014 Oso landslide, Snohomish County, Washington Results of Hydrologic Monitoring on Landslide-prone Coastal Bluffs near Mukilteo, Washington Results of Hydrologic Monitoring of a Landslide-Prone Hillslope in Portland's West Hills, Oregon, 2006-2017 Xu and others (2014) Yagi and others (2009) Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Martino and others (2014) Basharat and others (2014) Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Tanyas and others (2022) Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska