USGS - science for a changing world
Advanced Search

Filters: Tags: lidar (X)

1,040,477 results (2.6s)   

Filters

Date Range
Extensions
Types
Categories
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km above sea level. It is the product of deposits from thousands of eruptions, including at least 25 in (approximately) the last 12,000 years (the Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history together with recent activity suggests that Newberry Volcano is likely to erupt in the future. This DEM (digital elevation model) of Newberry Volcano contributes...
thumbnail
Point cloud data collected along a 500 meter portion of the 2014 South Napa Earthquake surface rupture near Cuttings Wharf Road, Napa, CA, USA. The data include 7 point cloud files (.laz). The files are named with the location and date of collection and either ALSM for airborne laser scanner data or TLS for terrestrial laser scanner data. The ALSM data re previously released but are included here because they have been precisely aligned with the TLS data as described in the processing section of this metadata.
thumbnail
This layer of the National Elevation Dataset (NED) is 2 arc-second (approximately 60 m) resolution. The 2 arc-second NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The 2 arc-second NED layer provides seamless coverage of Alaska. The 2 arc-second NED layer is available as pre-staged products tiled in 1 degree blocks in Erdas .img, ESRI arc-grid, and grid...
thumbnail
This layer of the National Elevation Dataset (NED) is 1 arc-second (approximately 30 m) resolution. The 1 arc-second NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The 1 arc-second NED layer provides seamless coverage of the conterminous United States, Hawaii, Mexico, Canada, Puerto Rico, other territorial islands, and in limited areas of Alaska. The...
thumbnail
A long-term study of the geomorphic history of the lower Rio Puerco arroyo in north-central New Mexico included the collection of high-precision (Real-time kinematic) GPS survey data (2002, 2007, 2010, and 2014), registration and rectification of historical aerial photographs (1935, 1950s, 1970s, and 1996), an aerial LiDAR survey (2005) with collection of digital imagery, and acquisition of post-flood (2006) satellite imagery. The Rio Puerco is a single-thread, meandering stream inset within an arroyo located in semiarid north-central New Mexico. The study reach extent is from the confluence with the Rio San Jose 67 km downvalley to the Rio Puerco streamgage near Bernardo, NM. Arroyo and channel geomorphic features...
thumbnail
A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute (ESRI), ArcGIS Topo to Raster module to interpolate grids from single beam bathymetric surveys collected by DWR, the Army Corp of Engineers (COE), the National Oceanic and Atmospheric Administration (NOAA), and the USGS, into a continuous surface. The Topo to Raster...
thumbnail
Data used for analysis described in the publication titled "Shallow-Landslide Hazard Map of Seattle, Washington" (available at https://pubs.usgs.gov/of/2006/1139/). The data consisted of a digital slope map derived from recent Light Detection and Ranging (LIDAR) imagery of Seattle, recent digital geologic mapping, and shear-strength test data for the geologic units in the surrounding area. The combination of these data layers within a Geographic Information System (GIS) platform allowed the preparation of a shallow landslide hazard map for the entire city of Seattle.
Hurricane Sandy, which made landfall on October 29, 2012, near Brigantine, New Jersey, had a significant impact on coastal New Jersey, including the large areas of emergent wetlands at Edwin B. Forsythe National Wildlife Refuge (NWR) and the Barnegat Bay region. In response to Hurricane Sandy, U.S. Geological Survey (USGS) has developed new applications for pre- and post-Hurricane Sandy regional lidar datasets for mapping the spatial extent of coastal wetlands. New methods have been developed to derive detailed land/water polygons for an area in coastal New Jersey, which is dominated by a complex configuration of emergent wetlands and open water. Using pre- and post-Hurricane Sandy lidar data, repeatable geospatial...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
This represents the flowline network in Sagina Bay Restoration Assessment (SBRA). It is attributed with the number of disconnections between the reach and the connecting river system. These data will help identify the condition of hydrologic separation between potential restoration areas and the connecting river system. Low numbers represent fewer disconnections such as culverts between the reach and the rivers requiring no flow network modification to restore the area.
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: decision support methods, geographic information systems, geospatial analysis, drainage, Saginaw Bay, All tags...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.


map background search result map search result map National Elevation Dataset (NED) 1 arc-second National Elevation Dataset (NED) Alaska 2 arc-second UMRR Pool 09 Topobathy UMRR Pool 13 Topobathy UMRR Pool 21 Topobathy UMRR Pool 06 Topobathy UMRR Pool 10 Topobathy UMRR Pool 11 Topobathy UMRR Pool 12 Topobathy UMRR Pool 15 Topobathy Lower Rio Puerco geospatial data, 1935 - 2014 UMRR Pool 20 Topobathy UMRR Pool 22 Topobathy UMRR Pool 24 Topobathy High-resolution digital elevation dataset for Newberry Volcano and vicinity, Oregon, based on lidar survey of August-September, 2010 and bathymetric survey of June, 2001 3D point cloud data from laser scanning along the 2014 South Napa Earthquake surface rupture, California, USA Saginaw Bay Restoration Assessment Degree Flowlines San Francisco Bay-Delta bathymetric/topographic digital elevation model (DEM) Data for Shallow-Landslide Hazard Map of Seattle, Washington 3D point cloud data from laser scanning along the 2014 South Napa Earthquake surface rupture, California, USA High-resolution digital elevation dataset for Newberry Volcano and vicinity, Oregon, based on lidar survey of August-September, 2010 and bathymetric survey of June, 2001 UMRR Pool 15 Topobathy Data for Shallow-Landslide Hazard Map of Seattle, Washington UMRR Pool 06 Topobathy UMRR Pool 21 Topobathy UMRR Pool 20 Topobathy UMRR Pool 10 Topobathy Lower Rio Puerco geospatial data, 1935 - 2014 UMRR Pool 12 Topobathy UMRR Pool 09 Topobathy UMRR Pool 22 Topobathy UMRR Pool 11 Topobathy UMRR Pool 24 Topobathy UMRR Pool 13 Topobathy San Francisco Bay-Delta bathymetric/topographic digital elevation model (DEM) Saginaw Bay Restoration Assessment Degree Flowlines National Elevation Dataset (NED) Alaska 2 arc-second National Elevation Dataset (NED) 1 arc-second