Skip to main content
Advanced Search

Filters: Tags: litter quality (X)

9 results (44ms)   

View Results as: JSON ATOM CSV
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration,...
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
The abundance and functional structure of soil micro- (nematodes) and mesofauna (collembolans and mites) in relation to species diversity and initial C:N ratio of plant litter were studied in a field mesocosm experiment. A total of five litter treatments were applied to generate an increasing diversity of plant species (one, three and 12 species) and/or differences in initial C:N ratio of the litter (low, intermediate and high ratio). Samples were taken 3, 6 and 24 months after the litter exposure. On each sampling date litter and underlying sand samples were taken. Our results showed that litter quality, but not litter diversity was the factor which affected the three animal groups under study. The effect of litter...
The introduction of nonnative plant species may decrease ecosystem stability by altering the availability of nitrogen (N) for plant growth. Invasive species can impact N availability by changing litter quantity and quality, rates of N2-fixation, or rates of N loss. We quantified the effects of invasion by the annual grass Bromus tectorum on N cycling in an arid grassland on the Colorado Plateau (USA). The invasion occurred in 1994 in two community types in an undisturbed grassland. This natural experiment allowed us to measure the immediate responses following invasion without the confounding effects of previous disturbance. Litter biomass and the C:N and lignin:N ratios were measured to determine the effects on...
thumbnail
The introduction of nonnative plant species may decrease ecosystem stability by altering the availability of nitrogen (N) for plant growth. Invasive species can impact N availability by changing litter quantity and quality, rates of N2-fixation, or rates of N loss. We quantified the effects of invasion by the annual grass Bromus tectorum on N cycling in an arid grassland on the Colorado Plateau (USA). The invasion occurred in 1994 in two community types in an undisturbed grassland. This natural experiment allowed us to measure the immediate responses following invasion without the confounding effects of previous disturbance. Litter biomass and the C:N and lignin:N ratios were measured to determine the effects on...
Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different...
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.


    map background search result map search result map Exotic plant invasion alters nitrogen dynamics in an arid grassland Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015) Above and belowground decomposition Litter quality Environmental data Exotic plant invasion alters nitrogen dynamics in an arid grassland Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015) Above and belowground decomposition Litter quality Environmental data