Skip to main content
Advanced Search

Filters: Tags: mesocosm (X) > Extensions: Citation (X)

3 results (10ms)   

View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/fwb.12290/abstract): Freshwater mussels (Unionidae) are a highly imperilled faunal group. One critical threat is thermal sensitivity, because global climate change and other anthropogenic activities contribute to increasing stream temperature and altered hydrologic flow that may be detrimental to freshwater mussels. We incorporated four benthic environmental components – temperature, sediment, water level (a surrogate for flow) and a vertical thermal gradient in the sediment column – in laboratory mesocosm experiments with juveniles of two species of freshwater mussels (Lampsilis abrupta and Lampsilis radiata) and tested their effects on survival, burrowing...
Climate change is causing measurable changes in rainfall patterns, and will likely cause increases in extreme rainfall events, with uncertain implications for key processes in ecosystem function and carbon cycling. We examined how variation in rainfall total quantity (Q), the interval between rainfall events (I), and individual event size (SE) affected soil water content (SWC) and three aspects of ecosystem function: leaf photosynthetic carbon gain (inline image), aboveground net primary productivity (ANPP), and soil respiration (inline image). We utilized rainout shelter-covered mesocosms (2.6 m3) containing assemblages of tallgrass prairie grasses and forbs. These were hand watered with 16 I�Q treatment combinations,...
We examined plant community responses to interactions between arbuscular mycorrhizal (AM) fungi and availability of atmospheric CO2 and soil N. Communities of 14 plant species were grown in mesocosms containing living or killed AM fungal inoculum, ambient or elevated atmospheric CO2 and low or enriched soil N. After one growing season, significantly different plant communities existed in the different treatments. Plant species richness was lowest in +N mesocosms and highest in +AM + CO2 mesocosms. At ambient CO2, AM fungi reduced richness but at elevated CO2 they increased it. This was caused by changes in mortality rates of several C3 forbs and may suggest that CO2 enrichment ameliorates the carbon cost of some...