Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: model (X)

645 results (56ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents the average amount of Growing Degree Days (GDD) per year within each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Growing degree days (referenced to 0oC) (unit = deg C days) were determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries. They were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model...
thumbnail
Ken Ferschweiler (CBI) used climate data from the PRISM group (Chris Daly, Oregon State University) at 4kmx4km spatial grain across the conterminous USA to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling and created anomalies from the Hadley CM3 General Circulation Model (GCM) run through the A2 emission scenario (SRES - special report on emission scenarios published in 2000). To run the MAPSS model (Neilson 1995), average monthly precipitation values were calculated for the period 2045-2060. This dataset shows the standard deviation of the annual precipitation for that period.
thumbnail
This dataset corresponds to statistically downscaled and reprojected GCM-driven RegCM3 (regional climate model) future projections. Data were bias corrected using the delta/anomaly method whereby the difference between future and historical projections from RegCM3 were calculated, reprojected and downscaled using linear interpolation to then modify a PRISM model generated historical baseline (1968-1999).
thumbnail
This dataset represents the difference between future and historic maximum temperatures under the CSIRO A2 future climate scenario.
thumbnail
The beaches of the Hawaiian Islands attract nearly 9 million visitors each year, who inject around $15.6 billion into the state’s economy and support almost 200,000 jobs. Beyond their economic importance, Hawaiian beaches are also culturally and ecologically valuable. However, climate change driven sea-level rise is causing many beaches to disappear, endangering property, infrastructure, and critical habitats. The goal of this project was to develop a method for forecasting erosion-vulnerable beach areas that could be used in coastal management planning. Researchers focused on the island of Kauaʻi, modeling beach response to rising sea level over the next century and producing maps that provide information about...
This community serves to document data and analysis collected by researchers within the Upper Midwest Water Science Center whose mission is to collect high-quality hydrologic data and conduct unbiased, scientifically sound studies of water resources within the Great Lakes and Upper Mississippi Basins. We strive to meet the changing needs of those who use our information—from the distribution, availability, and quality of our water resources to topic-oriented research that addresses current hydrological issues.
thumbnail
Percent change in the average surface runoff for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario.Simulated mean annual surface runoff (in mm H2O yr-1), was determined for each HUC5 watershed by averaging values of original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen...
thumbnail
Percent change in the mean area burned per year (per ~4 km pixel ) for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario.Mean area burned per year per ~4 km pixel, (in square meters), was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget,...
thumbnail
Change in the majority generalized vegetation type for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Majority generalized vegetation type was determined for each HUC5 watershed from from original ~ 4 km raster data. Generalized vegetation types were assigned by combining detailed MC1 vegetation classes into four general catagories: desert, grassland, shrubland, and forest. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background:...
thumbnail
This dataset represents the average amount of live tree carbon for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Simulated mean live forest carbon (output variable C_Forestyr in MC1 version B60, which includes both above and below-ground tree carbon) was determined for each HUC5 watershed. Units are grams per square meter. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and...
thumbnail
Percent change in the mean area burned per year (per ~4 km pixel) for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Mean area burned per year per ~4 km pixel (in square meters), was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water...
thumbnail
This map represents the percent change in total ecosystem carbon from 1971-2000 to 2070-2099, simulated by the model MC1 under the Hadley future climate projection and A2 anthropogenic emissions scenario. The average annual value of total ecosystem carbon for the respective 30-year periods decreased in some of the 5,311 grid cells of the Eastern Oregon study area and increased in others.The range of data values is from -18.2% to +194.1%. The mean value is -78.0% The vegetation model MC1 (e.g. Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts at two study sites, one in eastern Oregon (Deschutes and Fremont-Winema National Forests)...
thumbnail
This map represents the difference in annual minimum temperatures, simulated by the model MC1 between the 30-year periods 1971-2000 and 2070-2099, using the Hadley future climate projection under the A2 anthropogenic emission scenario. The average annual minimum temperature for the respective 30-year periods increased in all of the 5,311 grid cells of the Apache-Sitgreaves study area. The greatest increase was 4.35 C; the least increase was 4.26 C; and the mean increase was 4.31 C. The vegetation model MC1 (e.g. Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts at two study sites in eastern Oregon (Deschutes and Fremont-Winema...
thumbnail
NARCCAP: http://www.narccap.ucar.edu/ The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that will serve the climate scenario needs of the United States, Canada, and northern Mexico. NARCCAP is systematically investigating the uncertainties in future climate projections on the regional level. NARCCAP closely matches the regional climate models (RCMs) with multiple atmosphere-ocean general circulation models (AOGCMs) along with the A2 scenario from the Special Report on Emission Scenarios (SRES) over an area covering most of North America. NARCCAP also validates the regional climate model performance by driving the RCMs with reanalyses, which is similar to driving...
thumbnail
This map represents the mean for the 30 year period 1971-2000 of the annual peak value of the fraction of live vegetation carbon which is in herbaceous (as opposed to woody) vegetation. The data is from output variable GFRAC in MC1 version B60. The data values are unitless fractions and range from 0 to 1. The vegetation model MC1 (e.g. Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts at two study sites in eastern Oregon (Deschutes and Fremont-Winema National Forests) and in Arizona (Apache Sitgreaves National Forest area) in the context of a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). Historical climate...
thumbnail
Introduction : Swainson’s Thrush is a medium sized (15-18cm) thrush which prefers to breed in dense shrub growth associated with spruce-fir forests. The "russet-backed" race prefers mixed forests and deciduous riparian woodlands of the coastal region from British Columbia, to northern California. These Pacific populations winter in mature tropical and secondary forests of Central America, whereas the "olive-backed" race that breeds in the Boreal and Rockies winters in S. America. Models of Monitoring Avian Productivity and Survival (MAPS) demographic data and high-resolution land cover data showed that Swainson’s Thrush prefers large intact forest patches with low perimeter to area ratios. On a regional...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the upper Chattahoochee River Basin in northeast Georgia using the Precipitation Runoff Modeling System (PRMS). These simulations were developed to provide example applications of enhancements to the PRMS for the following topics: two new time-series input options (dynamic parameter module and water-use module), two new output options (Hydrologic Response Unit (HRU) summary output module and basin variables summary output module), and three updates of existing capabilities (stream and lake flow routing module, surface-depression storage and flow simulation, and the initial-conditions specification). These PRMS model input and output...
thumbnail
This map represents the change between 1971-2000 and 2070-2099 in the mean annual fraction of each gridcell affected by fire, as simulated by the model MC1 under the Hadley future climate projection and A2 anthropogenic emissions scenario. Data values are calculated as PART_BURN(2070-2099) minus PART_BURN(1971-2000). PART_BURN data is from MC1 version B60. The average annual fraction of cell burned for the respective 30-year periods increased in some of the 5,311 grid cells of the Apache-Sitgreaves study area and decreased in others. The range of data values is from -0.077 to +0.163. The mean value is +0.031. The vegetation model MC1 (e.g. Bachelet et al. 2001) was used to simulate vegetation dynamics, associated...
thumbnail
NARCCAP: http://www.narccap.ucar.edu/ The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that will serve the climate scenario needs of the United States, Canada, and northern Mexico. NARCCAP is systematically investigating the uncertainties in future climate projections on the regional level. NARCCAP closely matches the regional climate models (RCMs) with multiple atmosphere-ocean general circulation models (AOGCMs) along with the A2 scenario from the Special Report on Emission Scenarios (SRES) over an area covering most of North America. NARCCAP also validates the regional climate model performance by driving the RCMs with reanalyses, which is similar to driving...


map background search result map search result map Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Simulated change in generalized vegetation types between historical and future time periods under three climate change projections for OR and WA, USA Simulated historical live forest carbon (1971-2000) for OR and WA, USA Simulated percent change in area burned between historical and future time periods under three climate change projections for OR and WA, USA Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Simulated percent change in surface runoff between historical and future time periods under three climate change projections for AZ and NM, USA Simulated percent change in area burned between historical and future time periods under three climate change projections for AZ and NM, USA Percent change in the average annual value of total ecosystem carbon between 1971-2000 and 2070-2099, as simulated by MC1 under Hadley A2 for the Eastern Oregon study area, USA Difference in mean annual minimum temperatures between 1971-2000 and 2070-2099 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA Change in the mean annual fraction of cell burned between 1971-2000 and 2070-2099, as simulated by MC1 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA Seasonal Average Precipitation (1980-2004) from NCEP-driven WRFG Monthly Average Minimum Daily Temperature (1970-2000) from CGCM3-driven CRCM Standard Deviation of Annual Precipitation (2045-2060) from HadCM3 GCM under A2 scenario (Western USA) 4KM Results: Bias-corrected Average Annual Temperature (2045- 2060) from GFDL-driven RegCM3 climate model (Western US) Annual Fraction of the Total Live Vegetation Carbon Held in Herbaceous Plants (1971-2000) for the Apache-Sitgreaves study area, Arizona, USA Calculated difference between simulated minimum temperatures for 2071 to 2100 under MIROC A2 climate scenario for the eastern Oregon study area, USA Swainson's Thrush - Predicted Productivity Index Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Upper Midwest Water Science Center Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Annual Fraction of the Total Live Vegetation Carbon Held in Herbaceous Plants (1971-2000) for the Apache-Sitgreaves study area, Arizona, USA Difference in mean annual minimum temperatures between 1971-2000 and 2070-2099 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA Change in the mean annual fraction of cell burned between 1971-2000 and 2070-2099, as simulated by MC1 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA Percent change in the average annual value of total ecosystem carbon between 1971-2000 and 2070-2099, as simulated by MC1 under Hadley A2 for the Eastern Oregon study area, USA Calculated difference between simulated minimum temperatures for 2071 to 2100 under MIROC A2 climate scenario for the eastern Oregon study area, USA Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Upper Midwest Water Science Center Simulated percent change in area burned between historical and future time periods under three climate change projections for OR and WA, USA Simulated percent change in surface runoff between historical and future time periods under three climate change projections for AZ and NM, USA Simulated percent change in area burned between historical and future time periods under three climate change projections for AZ and NM, USA Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Simulated change in generalized vegetation types between historical and future time periods under three climate change projections for OR and WA, USA Simulated historical live forest carbon (1971-2000) for OR and WA, USA Standard Deviation of Annual Precipitation (2045-2060) from HadCM3 GCM under A2 scenario (Western USA) 4KM Results: Bias-corrected Average Annual Temperature (2045- 2060) from GFDL-driven RegCM3 climate model (Western US) Swainson's Thrush - Predicted Productivity Index Monthly Average Minimum Daily Temperature (1970-2000) from CGCM3-driven CRCM Seasonal Average Precipitation (1980-2004) from NCEP-driven WRFG