Skip to main content
Advanced Search

Filters: Tags: native plant materials development (X)

56 results (222ms)   

View Results as: JSON ATOM CSV
thumbnail
These datasets were developed to represent the geographic distribution of Plantago ovata in the Mojave Desert. This data release consists of two raster spatial layers (GeoTIFF) reflecting predicted habitat for the species within the Mojave Desert and the standard error in predictions. The habitat layer (raster dataset) is a continuous probability distribution of suitable habitat where values range from 0 (very low probability of species occurrence) to 1 (very high probability of species occurrence). An additional raster dataset provides the standard error in habitat predictions calculated among alternative habitat models: users should evaluate both the habitat and standard error datasets and exercise prudence when...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
These datasets were developed to represent the genetic diversity, population structure, and geographic distribution of Plantago ovata in the Mojave Desert. This data release consists of two tab-delimited text files representing the genetic diversity and structure of Plantago ovata (.genepop and .vcf), and two raster spatial datasets (GeoTIFF) reflecting predicted habitat for the species within the Mojave Desert. The genetic datasets record genetic variation at an individual level, with the file structures varying based on the programs within which the files are intended to be edited. Each file contains 13,111 SNPs genotyped in 748 individuals. The genepop file can be viewed in GENEPOP software (Rousset 2008) or...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
These data were compiled to investigate the evolutionary history of Graham's beardtongue (Penstemon grahamii). Objective(s) of our study were to determine the evolutionary history of P. grahamii, including ancestral population sizes, the history of population divergences, and historical connectivity. In addition, we characterized population structure, genetic diversity summary statistics, and landscape factors influencing differentiation. These data represent anonymous loci sequenced from throughout the P. grahamii genome (specifically, .vcf and .structure files). Data in these files were manipulated to represent site frequency spectra between population pairs (.data files). These data were collected in 2019 from...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
These data were compiled to investigate the evolutionary history of Hilaria jamesii, Hilaria mutica, and Hilaria rigida. The data release consists of two tab delimited text files that may be used to infer population structure (viva_structure.stru) or relationships among sampling localities (viva.phylip). Files record genetic variation on an individual (.stru) or sampling locality (.phylip) level. These files may be opened and edited in a text editor program, such as Notepad ++ (PC) or BBEdit (Mac). The .phylip file can be uploaded to phyML or SVDQuartets to generate a tree-based visualization of relationships ( http://www.atgc-montpellier.fr/phyml/ or https://paup.phylosolutions.com, repectively). The .stru file...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...


map background search result map search result map 'Viva' native plant material data in support of restoration and conservation Genetic and Habitat Data for Plantago ovata in the Mojave Desert Habitat Data for Plantago ovata in the Mojave Desert Penstemon grahamii genetic data from a dryland region of the western United States Species Distribution Models for Native Species in the Mojave Desert Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert Penstemon grahamii genetic data from a dryland region of the western United States Genetic and Habitat Data for Plantago ovata in the Mojave Desert Habitat Data for Plantago ovata in the Mojave Desert Species Distribution Models for Native Species in the Mojave Desert Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert 'Viva' native plant material data in support of restoration and conservation