Skip to main content
Advanced Search

Filters: Tags: network theory (X)

2 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Genetic networks can characterize complex genetic relationships among groups of individuals, which can be used to rank nodes most important to the overall connectivity of the system. Ranking allows scarce resources to be guided towards nodes integral to connectivity. The greater sage-grouse (Centrocercus urophasianus) is a species of conservation concern that breeds on spatially discrete leks that must remain connected by genetic exchange for population persistence. We genotyped 5,950 individuals, from 1,200 greater sage-grouse leks distributed across the entire species’ geographic range. We found a small world network composed of 458 nodes connected by 14,481 edges that are described here. The files associated...
Accurate, time dependent control options are required to halt biological invasions prior to equilibrium establishment, beyond which control efforts are often impractical. Although invasions have been successfully modeled using diffusion theory, diffusion models are typically confined to providing simple range expansion estimates. In this work, we use a Susceptible/Infected cellular automaton (CA) to simulate diffusion. The CA model is coupled with a network model to track the speed and direction of simulated invasions across heterogeneous landscapes, allowing for identification of locations for targeted control in both time and space. We evaluated the role of the location of initial establishment insofar as it affected...


    map background search result map search result map Genetic data and genetic network attributes for rangewide Greater Sage-grouse network constructed in 2018 (ver. 2.0, December 2022) Genetic data and genetic network attributes for rangewide Greater Sage-grouse network constructed in 2018 (ver. 2.0, December 2022)