Skip to main content
Advanced Search

Filters: Tags: nitrate (X) > partyWithName: Central Midwest Water Science Center (X)

9 results (49ms)   

View Results as: JSON ATOM CSV
thumbnail
The datasets provided here are the input data used to run the Seasonal Kendall Trend (SKT) tests and Weighted Regressions on Time, Discharge, and Season (WRTDS) models. SKT tests use "annualSamplingFreqs_allSites.csv" and "wqData_screenedSitesAll.csv" which includes, for all site-parameter combinations, information on annual sampling frequencies and the screened water-quality data, respectively. The WRTDS models use "DRB.wqdata.20200521.csv", "DRB.flow.20200610.zip", and "DRB.info.20200521.csv" for calibration which includes, for all site-parameter combinations, the water-quality data, streamflow data (as separate .csv files for each site), model specifications and site information, respectively. The multisource...
thumbnail
During water years 2016–2020, the U.S. Geological Survey, in cooperation with the Illinois Environmental Protection Agency, operated continuous monitoring stations on eight of the major rivers in Illinois to better quantify nutrient and sediment loadings from the State of Illinois to the Mississippi River. This data release presents estimates of daily nitrate, suspended sediment, and phosphorus concentrations and uncertainty from that period. The concentration estimates are based on a combination of discrete sampling data and surrogate regression (imputation). The data release comprises a single csv file containing daily timeseries of concentration and uncertainty for each monitoring station.
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project. One of the major goals of the NAWQA project was to determine how river water quality has changed over time. To support that goal, long-term consistent and comparable monitoring has been conducted by the USGS on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water quality. In 2017, data from these multiple sources were combined to support one of the most comprehensive assessments...
thumbnail
This data release contains estimates of annual nitrate, suspended sediment, phosphorus, and chloride loads and uncertainty from sites in the Illinois Environmental Protection Agency (Illinois EPA) Ambient Water Quality Monitoring Network. The loads were estimated using Weighted Regressions on Time, Discharge, and Season with Kalman filtering (WRTDS-K) and existing discrete water-quality data and discharge data collected by Illinois EPA, the U.S. Geological Survey, and Illinois State Water Survey through water year (WY) 2020. All water-quality and discharge data used in this work are available from the Water Quality Portal and the National Water Information System. The data release comprises a single comma-separated...
thumbnail
The datasets provided here are the output from the Seasonal Kendall Trend (SKT) test and Weighted Regressions on Time, Discharge, and Season (WRTDS) model that characterize changes in water quality in rivers and streams across the Delaware River Basin. SKT results are compiled in "skt_out.csv" for all combinations of site, water-quality parameter, and trend period. WRTDS results are compiled in four datasets. If unspecified, generalized flow normalization (GFN) results are reported. Stationary flow normalization (SFN) results are indicated in the datasets. "wrtds_out_annResults.csv" contains the annual estimates of mean concentration and load and GFN and SFN estimates by site and parameter for the entire calibration...
thumbnail
Surface and groundwater samples were collected, processed, and analyzed for pesticides, nutrients, organic carbon, and inorganics as part of a cooperative study with the City of Cedar Rapids, Iowa. Filtered and whole water samples were sent to the National Water Quality Laboratory in Denver, Colorado. U.S. Geological Survey staff collected field properties and discharge measurements in-situ. Discrete nitrate plus nitrite nitrogen samples were collected by the Cedar Rapids Utilities Water Department, the Iowa Department of Natural Resources, and the U.S. Geological Survey.
thumbnail
During the 2018–20 water years, the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, operated a continuous monitoring station on the Des Plaines River at Route 53 at Joliet, Illinois (USGS station 05537980), to better quantify nutrient and sediment loadings from the Greater Chicago Area to the Illinois River. This data release presents estimates of daily nitrate, suspended sediment, and phosphorus concentrations and uncertainty from that period. The concentration estimates are based on a combination of discrete sampling, continuously monitored surrogates, and surrogate regression (Bayesian imputation). The data release comprises a single csv file containing...
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project. One of the major goals of the NAWQA project was to determine how river water quality has changed over time. To support that goal, long-term consistent and comparable monitoring has been conducted by the USGS on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water quality. In 2017, data from these multiple sources were combined to support one of the most comprehensive assessments...
thumbnail
This data release contains estimates of annual nitrogen and phosphorus loads, as well as loads of other constituents, from sites in the Illinois Environmental Protection Agency (Illinois EPA) Ambient Water Quality Monitoring Network. The loads were estimated using Weighted Regressions on Time, Discharge, and Season with Kalman filtering (WRTDS-K) and existing discrete water-quality data and discharge data collected by Illinois EPA, the U.S. Geological Survey, and Illinois State Water Survey from water year 1976 to 2021 (Hirsch and others, 2015; Lee and others, 2019). All water-quality and discharge data used in this work are available from the Water Quality Portal and the National Water Information System database...


    map background search result map search result map Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (input data) Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (output data) Modeled nutrient and sediment concentrations from major rivers in Illinois based on continuous monitoring from October 1, 2015, through September 30, 2020 Hydrologic and Water Quality Data from the Cedar River and Cedar River Alluvial Aquifer, Linn County, Iowa, 1990-2019 Modeled nutrient and sediment concentrations from the Des Plaines River at Route 53 at Joliet, Illinois, based on continuous monitoring from October 1, 2017, through September 30, 2020 WRTDS-K nutrient and sediment loads at Illinois EPA Ambient Water Quality Monitoring Network sites through water year 2020 Water-quality and streamflow datasets used in Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2017 (input data) Water-quality and streamflow datasets used in Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2017 (output data) Annual Nutrient Loads at Illinois EPA Ambient Water Quality Monitoring Network Sites, Water Years 1976–2021 Hydrologic and Water Quality Data from the Cedar River and Cedar River Alluvial Aquifer, Linn County, Iowa, 1990-2019 Modeled nutrient and sediment concentrations from the Des Plaines River at Route 53 at Joliet, Illinois, based on continuous monitoring from October 1, 2017, through September 30, 2020 Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (input data) Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (output data) Annual Nutrient Loads at Illinois EPA Ambient Water Quality Monitoring Network Sites, Water Years 1976–2021 WRTDS-K nutrient and sediment loads at Illinois EPA Ambient Water Quality Monitoring Network sites through water year 2020 Modeled nutrient and sediment concentrations from major rivers in Illinois based on continuous monitoring from October 1, 2015, through September 30, 2020 Water-quality and streamflow datasets used in Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2017 (output data) Water-quality and streamflow datasets used in Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2017 (input data)