Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: nutrient cycling (X)

33 results (60ms)   

View Results as: JSON ATOM CSV
The most common system responses attributed to microfloral grazers (protozoa, nematodes, microarthropods) in the literature are increased plant growth, increased N uptake by plants, decreased or increased bacterial populations, increased CO2 evolution, increased N and P mineralization, and increased substrate utilization. Based on this evidence in the literature, a conceptual model was proposed in which microfloral grazers were considered as separate state variables. To help evaluate the model, the effects of microbivorous nematodes on microbial growth, nutrient cycling, plant growth, and nutrient uptake were examined with reference to activities within and outside of the rhizosphere. Blue grama grass (Bouteloua...
Interspecific variation in polyphenol production by plants has been interpreted in terms of defense against herbivores. Several recent lines of evidence suggest that polyphenols also influence the pools and fluxes of inorganic and organic soil nutrients. Such effects could have far-ranging consequences for nutrient competition among and between plants and microbes, and for ecosystem nutrient cycling and retention. The significance of polyphenols for nutrient cycling and plant productivity is still uncertain, but it could provide an alternative or complementary explanation for the variability in polyphenol production by plants. Published in Trends in Ecology & Evolution, volume 15, issue 6, on pages 238 - 243, in...
The recent upsurge in research attention to aeolian dust has shown that dust transport systems operate on very large spatial and temporal scales, and involve much larger quantities of sediment than was previously realized. An inevitable consequence of this is that researchers from a range of neighbouring disciplines, including ecology, are beginning to realize that this new knowledge has important implications for their study areas. In the present paper, we examine the ecological implications (real and potential) of this expanding knowledge of dust transport systems, with a particular emphasis upon the Australian dust transport system. We track these ecological effects from source to sink. At source, wind erosion–soil–vegetation...
thumbnail
These data were compiled for a restoration experiment testing the regenerative and functional response of biocrust inoculum reintroduced to a field setting. Regenerative traits measured included measurements of biocrust cover, chlorophyll content, and the roughness of the soil surface. Functional traits measured included nutrient cycling and soil stability. Additionally, these data were compiled for an experiment testing how much soil is lost from different types of ground cover. The data collected was related to ground cover and the amount of soil lost from plots through time. These data were used to inform the conclusions drawn in the accompanying manuscript.
We explore empirical and theoretical evidence for the functional significance of plant-litter diversity and the extraordinary high diversity of decomposer organisms in the process of litter decomposition and the consequences for biogeochemical cycles. Potential mechanisms for the frequently observed litter-diversity effects on mass loss and nitrogen dynamics include fungi-driven nutrient transfer among litter species, inhibition or stimulation of microorganisms by specific litter compounds, and positive feedback of soil fauna due to greater habitat and food diversity. Theory predicts positive effects of microbial diversity that result from functional niche complementarity, but the few existing experiments provide...
We explore empirical and theoretical evidence for the functional significance of plant-litter diversity and the extraordinary high diversity of decomposer organisms in the process of litter decomposition and the consequences for biogeochemical cycles. Potential mechanisms for the frequently observed litter-diversity effects on mass loss and nitrogen dynamics include fungi-driven nutrient transfer among litter species, inhibition or stimulation of microorganisms by specific litter compounds, and positive feedback of soil fauna due to greater habitat and food diversity. Theory predicts positive effects of microbial diversity that result from functional niche complementarity, but the few existing experiments provide...
Microbial activity in semiarid and arid environments is closely related to the timing, intensity, and amount of precipitation. The characteristics of the soil surface, especially the influence of biological soil crusts, can determine the amount, location, and timing of water infiltration into desert soils, which, in turn, determines the type and size of microbial response. Nutrients resulting from this pulse then create a positive feedback as increases in microbial and plant biomass enhance future resource capture or, alternatively, may be lost to the atmosphere, deeper soils, or downslope patches. When rainfall intensity overwhelms the water infiltration capacity of the plant interspace or the plant patch, overland...
Widespread loss of sagebrush (Artemisia tridentata) in much of the western US represents a major shift in the dominant species type and may trigger changes in ecosystem characteristics such as the distribution of nutrients. We examined total nitrogen (N) and carbon (C) content of soils directly below and away from Wyoming big sagebrush (A. tridentata ssp. tridentata) canopies in undisturbed areas, where shrubs had been removed for six years, and in areas that have received annual additions of nitrogen, to improve our understanding of the effects of shrub canopies and perturbations on nutrient distribution. Soils below shrub canopies had more C and N than soils in open interspaces; resource islands were still present...
Plant roots and soil microorganisms contain significant quantities of low molecular weight (MW) phosphorylated nucleosides and sugars. Consequently, upon death these can represent a significant input of organic-P to the soil. Some of these organic-P substrates must first be dephosphorylated by phosphatases before being assimilated by the soil microbial community while others can be taken up directly from soil solution. To determine whether sorption or phosphatase activity was limiting the bioavailability of low MW organic-P in soil we compared the microbial uptake and C mineralization of a range of 14C-labeled organic-P substrates [glucose-6-phosphate, adenosine monophosphate (AMP), adenosine diphosphate (ADP) and...
thumbnail
Herbivore alteration of litter inputs may change litter decomposition rates and influence ecosystem nutrient cycling. In a semiarid woodland at Sunset Crater National Monument, Arizona, long-term insect herbivore removal experiments and the presence of herbivore resistant and susceptible pinyon pines (Pinus edulis) have allowed characterization of the population- and community-level effects of herbivory. Here we report how these same two herbivores, the mesophyll-feeding scale insect Matsucoccus acalyptus and the stem-boring moth Dioryctria albovittella alter litter quality, dynamics, and decomposition in this ecosystem. We measured aboveground litterfall, litter chemical composition, and first-year litter decomposition...
Biological soil crusts of arid and semiarid lands contribute significantly to ecosystem stability by means of soil stabilization, nitrogen fixation, and improved growth and establishment of vascular plant species. In this study, we examined growth and nutrient content of Bromus tectorum, Elymus elymoides, Gaillardia pulchella, and Sphaeralcea munroana grown in soil amended with one of three levels of biological soil crust material: (1) a low-fertility sand collected near Moab, Utah; (2) sand amended with a 1-cm top layer of excised soil crust; and (3) crushed crust material. In addition, all plants were inoculated with spores of the arbuscular mycorrhizal fungus, Glomus intraradices. Plants were harvested after...
thumbnail
Bromus tectorum is an exotic annual grass that currently dominates many western U.S. semi-arid ecosystems, and the effects of this grass on ecosystems in general, and soil biota specifically, are unknown. Bromus recently invaded two ungrazed and un-burned perennial bunchgrass communities in southeastern Utah. This study compared the soil food-web structure of the two native grassland associations (Stipa [S] and Hilaria [H]), with and without the presence of Bromus. Perennial grass and total vascular-plant cover were higher in S than in H plots, while quantities of ground litter were similar. Distribution of live and dead plant material was highly clumped in S and fairly homogenous in H. Soil food-web structure was...
Limited data exist on the affect of downy brome invasion on biogeochemical cycling. Biogeochemical cycling was quantified in a winterfat community in northeastern, CA that was separated into three invasion classes: noninvaded (NI), invaded for 3 yr (I3), and 10 yr (I10) by downy brome. On each plot, all aboveground vegetation was harvested and separated by species, dried, weighed, and tissue nutrients quantified. In addition, soil samples were collected from 0- to 30-, 30- to 60-, and 60- to 100-cm depths and various nutrient pools quantified. Aboveground biomass g/m2 was significantly greater, with downy brome averaging over 90% of the plant mass on the I10 plots (280 g) compared to the NI plots (148 g). In comparison...


map background search result map search result map Insect Herbivory Increases Litter Quality and Decomposition: An Extension of the Acceleration Hypothesis Soil Biota in an Ungrazed Grassland: Response to Annual Grass (Bromus tectorum) Invasion Erosion and Rehabilitation Data, Bandelier National Monument, New Mexico, USA Insect Herbivory Increases Litter Quality and Decomposition: An Extension of the Acceleration Hypothesis Erosion and Rehabilitation Data, Bandelier National Monument, New Mexico, USA Soil Biota in an Ungrazed Grassland: Response to Annual Grass (Bromus tectorum) Invasion