Skip to main content
Advanced Search

Filters: Tags: ocean acidification (X)

5 results (9ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
Coral reefs are some of the most biologically rich and economically valuable ecosystems in the world. They provide food, fishing, and recreation opportunities for millions of people, protect coastlines from storms, and shelter thousands of plant and animal species. However, climate change is contributing to the degradation of coral reefs in two significant ways: warming temperature and increasing acidification of ocean waters. Scientists are actively working to gather more specific information about how these factors will impact coral reef ecosystems. The purpose of this study was to identify differences in climate vulnerability among three important reef-building coral species in the Florida Keys. Researchers...
Geochemical analysis (including stable boron, boron:calcium ratio, and carbon and oxygen isotopes) were measured from coral cores collected in July 2013 from the shallow reef at Kahekili in Kaanapali, west Maui, Hawaii from scleractinian Porites lobata.
Coral reefs are degrading on a global scale, and rates of reef-organism calcification are predicted to decline due to ocean warming and acidification. Systematic measurements of calcification over space and time are necessary to detect change resulting from environmental stressors. We established a network of calcification monitoring stations at four managed reefs along the outerFlorida Keys Reef Tract (FKRT) from Miami to the Dry Tortugas. Eighty colonies (in two sequential sets of 40) of the reef-building coral, Siderastrea siderea, were transplanted to fixed apparatus that allowed repetitive detachment for buoyant weighing every 6 months. Algal-recruitment tiles were also deployed during each weighing interval...
thumbnail
Surface runoff and submarine groundwater discharge in particular are known vectors to the coastal ocean of elevated nutrients and contaminants leading to eutrophication, algal overgrowth, and coral disease. Freshwater discharging directly from submarine groundwater vents off of Kahekili Beach Park, Kaanapali, in West Maui contains elevated nutrient concentrations and lower pH values. Coral cores were collected in July 2013 from the shallow reef at Kahekili in Kaanapali, West Maui, Hawaii from scleractinian Porites lobata to specifically addresses the relationship between coral reef health and compounding stressors from contaminated submarine groundwater discharge.
thumbnail
Time-series of seawater carbonate chemistry variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, and dissolved inorganic carbon from sites along Kahekili Beach Park, west Maui near submarine groundwater seeps and living coral reefs. Samples for seawater were collected by pumping bottom water from the seafloor using a peristaltic pump and collecting discrete water samples every 4-hrs over a 6-day period.


    map background search result map search result map Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals Seawater carbonate chemistry, Kahekili, west Maui Coral growth parameters, Kahekili, west Maui Coral geochemistry time series from Kahekili, west Maui Coral geochemistry time series from Kahekili, west Maui Seawater carbonate chemistry, Kahekili, west Maui Coral growth parameters, Kahekili, west Maui Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals