Skip to main content
Advanced Search

Filters: Tags: plants (X) > Date Range: {"choice":"month"} (X)

107 results (20ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
Natural resource managers consistently identify invasive species as one of the biggest challenges for ecological adaptation to climate change. Yet climate change is often not considered during their management decision making. Given the many ways that invasive species and climate change will interact, such as changing fire regimes and facilitating the migration of high priority species, it is more critical than ever to integrate climate adaptation science and natural resource management. The coupling of climate adaptation and invasive species management remains limited by a lack of information, personnel, and funding. Those working on ecological adaptation to climate change have reported that information is not...
thumbnail
Invasive species establish outside of their native range, spread, and negatively impact ecosystems and economies. As temperatures rise, many invasive plants can spread into regions that were previously too cold for their survival. For example, kudzu, ‘the vine that ate the south’, was previously limited to mid-Atlantic states, but has recently started spreading in New Jersey and is expected to become invasive farther north. While scientists know of many of the invasive species expanding into the northeastern U.S., they do not know where those species are likely to become abundant and how they will impact vulnerable native ecosystems due to climate change. There are also currently no strategies to manage emerging...
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
Climate change is causing an increase in the amount of forested area burned by wildfires in the western U.S. The warm, dry post-fire conditions of the region may limit tree regeneration in some areas, potentially causing a shift to non-forest vegetation. Managers are increasingly challenged by the combined impacts of greater wildfire activity, the significant uncertainty about whether forests will recover, and limited resources for reforestation efforts. Simultaneously, there has been an increased focus on post-fire reforestation efforts as tree planting has become a popular climate change mitigation strategy across the nation. Therefore, with increased interest and need, it is crucial to identify where varying...
thumbnail
Tribal resource managers in the southwest U.S. are facing a host of challenges related to environmental change, including increasing temperatures, longer periods of drought, and invasive species. These threats are exacerbating the existing challenges of managing complex ecosystems. In a rapidly changing environment, resource managers need powerful tools and the most complete information to make the most effective decisions possible. Traditional Ecological Knowledge has enabled Indigenous peoples to adaptively manage and thrive in diverse environments for thousands of years, yet it is generally underutilized and undervalued, particularly in the context of western scientific approaches. Traditional Ecological...
thumbnail
Pollinator restoration requires information about what species to plant and when to plant them to ensure food sources are available throughout the periods when pollinators are active. Changes in climate, including earlier spring warming and warmer fall temperatures, may cause flowering to become out of sync with pollinator activity. When restoring land to support pollinators, managers are challenged to select a mix of species that support pollinators of concern throughout their periods of activity. Existing planting tools have several disadvantages such as, their usability is location specific, they are virtually non-existent for the South Central region, and they do not often account for future changes in plant...
thumbnail
Small lakes are important to local economies as sources of water supply and places of recreation. Commonly, lakes are considered more desirable for recreation if they are free of the thick weedy vegetation, often comprised of invasive species, that grows around the lake edge. This vegetation makes it difficult to launch boats and swim. In order to reduce this vegetation, a common technique in the Northeast and Midwest U.S. is a ‘winter drawdown’ . In a winter drawdown, the lake level is artificially lowered (via controls in a dam) during the winter to expose shoreline vegetation to freezing conditions, thereby killing them and preserving recreational value of the lake. However, this practice can impact both water...
thumbnail
Society makes substantial investments in federal, Tribal, state, and private programs to supplement populations of valued species such as stocking fish, planting trees, rebuilding oyster reefs, and restoring prairies. These important efforts require long-term commitment, but climate change is making environmental conditions less predictable and more challenging to navigate. Selection of species for population supplementation is often based on performance prior to release, and one or a few species may then be used for decades even as the environment is changing. When these species are propagated in large numbers, they can become the dominant population as well as genetically overtake any local adaptations. Therefore,...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
Climate change is expected to worsen the harmful effects of invasive species on native wildlife. This presents a growing conservation challenge for invasive species managers in the southeastern United States where thousands of invasive species exist. While many of these invasive species currently have relatively small ranges in the southeastern U.S., climate change may allow them to expand into new regions. To effectively plan and respond to the redistribution of invasive species, it is crucial to coordinate existing information and identify future information needs across regional boundaries. The ultimate goal of this project is to improve invasive species management in the face of climate change by establishing...
thumbnail
Climate change is causing species to shift their phenology, or the timing of recurring life events such as migration and spawning, in variable and complex ways. This can potentially result in mismatches or asynchronies in food and habitat resources that negatively impact individual fitness, population dynamics, and ecosystem function. Numerous studies have evaluated phenological shifts in terrestrial species, particularly birds and plants, yet far fewer evaluations have been conducted for marine animals. This project sought to improve our understanding of shifts in the timing of seasonal migration, spawning or breeding, and biological development (i.e. life stages present, dominant) of coastal fishes and migratory...
thumbnail
Mountain meadows in the western United States provide key habitats for many plant and wildlife species, many of which rely exclusively on these areas. Mountain meadows are also treasured by the public and provide beautiful areas to view wildflowers and wildlife on public lands such as national parks. However, mountain ecosystems are expected to be disproportionately affected by climate change. There is a limited understanding of how mountain meadows are changing, how temperature and precipitation may be driving those changes, and how this will impact sensitive species that inhabit these landscapes. Natural resource managers have an immediate need to understand these relationships to conserve or restore habitats...
thumbnail
Ecological systems are already responding to modern changes in climate. Many species are moving in directions and at rates that correspond with recent climatic change. Understanding how species distributions and abundances are likely to be altered can inform management and planning activities resulting in more robust management. We projected climate-driven changes in the abundances and distributions of 31 focal bird species in Oregon and Washington using the latest downscaled CMIP5 climate projections and corresponding vegetation model outputs. We mapped these future projections and integrated them into an existing web-based tool (http://data.pointblue.org/apps/nwcsc/) to allow managers and planners to access and...
thumbnail
Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed for assessing the vulnerability of species to climate change, it is unclear whether these approaches are likely to produce similar results. In this study, we compared the relative vulnerabilities to climate change of 76 species of birds, mammals, amphibians, and trees based on three different approaches to assessing vulnerability....
thumbnail
Species are adapted to particular environmental conditions, but are threatened as climate change shifts habitat conditions. One way species can respond is by moving to new suitable locations, known as climate-driven range shifts. But some species can move more easily and/or more quickly than others, and some landscapes are more difficult to cross. In the upper Midwest, the movement potential of many species is reduced by broad expanses of row-crop agriculture, roads and other types of development that fragment the remaining habitat. It is important to sustain and improve connectivity across landscapes so they can continue to support biodiversity and ecosystem services like water filtration, carbon storage, pollinator...
thumbnail
Recently intensifying drought conditions have caused increased stress to non-native tamarisk vegetation across riparian areas of the San Carlos Apache Tribe (hereafter Tribe) and the Upper Gila River watershed in Arizona and New Mexico. This also increases wildfire risk in the area, making the removal of tamarisk vegetation a primary restoration and climate adaptation objective for the Tribe. The research from this project can improve the Tribe’s capacity to map tamarisk and other riparian vegetation, in addition to monitoring the relative condition and water stress of the vegetation in a timely manner. Specifically, the project will help identify where tamarisk is on the reservation and inform restoration actions...
thumbnail
Climate change is poised to alter natural systems, the frequency of extreme weather, and human health and livelihoods. In order to effectively prepare for and respond to these challenges in the north-central region of the U.S., people must have the knowledge and tools to develop plans and adaptation strategies. The objective of this project was to build stakeholders’ capacity to respond to climate change in the north-central U.S., filling in gaps not covered by other projects in the region. During the course of this project, researchers focused on three major activities: Tribal Capacity Building: Researchers provided tribal colleges and universities with mini-grants to develop student projects to document climate-related...
thumbnail
Fruit-producing shrubs such as huckleberries, salal, and hazelnut are an important component of social history and traditional tribal diets in the Pacific Northwest. The fruits of these shrubs are also an important food source for foraging wildlife and pollinators, and serve as the basis for both non-tribal harvesting and small-scale commercial operations. Among land managers and tribes, there is a strong interest in preserving and restoring these culturally important plant species across the Pacific Northwest. However, limited knowledge is available on the current ranges of shrub species, or how climate change will impact future ranges or the timing of flowering and fruiting for key Northwest shrub species. ...


map background search result map search result map Understanding Climate Change Vulnerability in the Pacific Northwest: A Comparison of Three Approaches Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Capacity Building in the North-Central U.S.: Tribal Engagement, Climate Training, and PhenoCam Deployment Visualizing the Future Abundance and Distribution of Birds in the Northwest Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Forecasting Future Changes in Sagebrush Distribution and Abundance Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Climate Impacts on the Locations and Availability of Traditional Food Sources from Native Northwestern Shrubs Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Exploring the Past to Plan for the Future: Integrating Indigenous Knowledge and Paleoperspectives to Inform Climate Change Adaptation Science to Inform Post-fire Conifer Regeneration and Reforestation Strategies Under Changing Climate Conditions Creating a North Central Regional Invasive Species and Climate Change (NC RISCC) Management Network Identifying Vulnerable Ecosystems and Supporting Climate-Smart Strategies to Address Invasive Species Under Climate Change Rethinking Lake Management for Invasive Plants Under Future Climate: Sensitivity of Lake Ecosystems to Winter Water Level Drawdowns Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration From Water to Wildlife: Linking Water Timing and Availability to Meadows and Wildlife in a Changing Climate Climate-Adaptive Population Supplementation (CAPS) to Enhance Fishery and Forestry Outcomes Prioritizing Sites for Habitat Restoration to Enhance Connectivity in the Upper Midwest Mapping Riparian Vegetation Response to Climate Change on the San Carlos Apache Reservation and Upper Gila River Watershed to Inform Restoration Priorities: 1935 to Present (Phase 2) Southeast Regional Invasive Species and Climate Change Management Network (SE RISCC) Mapping Riparian Vegetation Response to Climate Change on the San Carlos Apache Reservation and Upper Gila River Watershed to Inform Restoration Priorities: 1935 to Present (Phase 2) Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Climate-Adaptive Population Supplementation (CAPS) to Enhance Fishery and Forestry Outcomes Prioritizing Sites for Habitat Restoration to Enhance Connectivity in the Upper Midwest Visualizing the Future Abundance and Distribution of Birds in the Northwest Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Climate Impacts on the Locations and Availability of Traditional Food Sources from Native Northwestern Shrubs From Water to Wildlife: Linking Water Timing and Availability to Meadows and Wildlife in a Changing Climate Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Exploring the Past to Plan for the Future: Integrating Indigenous Knowledge and Paleoperspectives to Inform Climate Change Adaptation Science to Inform Post-fire Conifer Regeneration and Reforestation Strategies Under Changing Climate Conditions Forecasting Future Changes in Sagebrush Distribution and Abundance Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Southeast Regional Invasive Species and Climate Change Management Network (SE RISCC) Identifying Vulnerable Ecosystems and Supporting Climate-Smart Strategies to Address Invasive Species Under Climate Change Rethinking Lake Management for Invasive Plants Under Future Climate: Sensitivity of Lake Ecosystems to Winter Water Level Drawdowns Capacity Building in the North-Central U.S.: Tribal Engagement, Climate Training, and PhenoCam Deployment Creating a North Central Regional Invasive Species and Climate Change (NC RISCC) Management Network Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Understanding Climate Change Vulnerability in the Pacific Northwest: A Comparison of Three Approaches