Skip to main content
Advanced Search

Filters: Tags: precipitation (atmospheric) (X)

196 results (47ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2038-42 (centered in the year 2040) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates change factors derived...
thumbnail
This data release contains historical SnowModel (Liston and Elder, 2006) output for the Crown of the Continent and surrounding areas in Montana and Idaho, USA; and Alberta and British Columbia, Canada from September 1, 1981 through August 31, 2020. Fifteen daily variables were simulated or derived for this release: (1) snow water equivalent (swed), (2) liquid precipitation (rpre), (3) solid precipitation (spre), (4) albedo (albd), (5) glacial ice melt (glmt), (6) total precipitation (prec), (7) runoff (roff), (8) snow covered area (sca), (9) snow density (sden), (10) snowmelt (smlt), (11) snow depth (snod), (12) snow sublimation (ssub), (13) air temperature (tair), (14) wind speed (wspd), and (15) wind direction...
thumbnail
This dataset provides a shapefile of surface water diversions directly to agricultural fields in the Russian River Coupled Groundwater and Surface-Water Flow Model (GSFLOW) model.
thumbnail
These data were compiled for evaluating plant water use, or river-reach level evapotranspiration (ET) data, in the unrestored riparian corridor of the Colorado River delta as specified under Minute 319 of the 1944 Water Treaty. Additionally, these data were compiled for evaluating restoration-level data in Reach 2 and Reach 4, as specified under Minute 323 of the 1944 Water Treaty. Objectives of our study were to measure the peak growing season evapotranspiration (ET) for the average of months in summer-fall (May to October) for the seven reaches, for the full riparian corridor, and for four restoration sites, from 2019 through 2022. The seven reach areas from the Northerly International Boundary (NIB) to the end...
Tags: 1944 Water Treaty, Arizona, Botany, Colorado River, Colorado River delta, All tags...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains a suite of 52 streamflow metrics. These metrics were computed using daily outputs of runoff from HRUs (PRMS variable hru_outflow) and streamflow from the model stream segments (PRMS variable seg_outflow) for all historical and future simulations (table1_GCMs_used.csv) with both static and dynamic land cover parameters. These streamflow statistics describe the duration, frequency, magnitude, rate of change, and...
thumbnail
This data release describes micrometeorological and soil-moisture data collected from January 1, 2017 through May 31, 2019 at the Amargosa Desert Research Site adjacent to a low-level radio­active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, and soil-water content. Soil-moisture data include periodic measurements of volumetric water-content at four experimental sites that represent vegetated native soil, devegetated native soil, and two simulated waste disposal trenches—maximum measurement depths range from 5.25...
thumbnail
These data were compiled for a study that investigated the effects of drought seasonality and plant community composition on two dominant perennial grasses, Achnatherum hymenoides (C3 photosynthesis), and Pleuraphis jamesii (C4 photosynthesis), in a dryland ecosystem. In 2015 USGS Ecologists recorded vegetation and soil moisture data in 36 experimental plots which manipulated precipitation in two plant community types. The experiment consisted of three precipitation treatments: control (ambient precipitation), cool-season drought (-66% ambient precipitation November-April), and warm-season drought (-66% ambient precipitation May-October), applied in two plant communities (perennial grasses with or without a large...
Tags: Achnatherum hymenoides, Botany, C3 photosynthesis, C4 photosynthesis, Canyonlands National Park, All tags...
thumbnail
In cooperation with the Puerto Rico Environmental Quality Board, the U.S. Geological Survey (USGS) calculated over 40 different basin characteristics as part of preparing the Puerto Rico StreamStats application. These data were used to update the peak flow and low flow regression equations for Puerto Rico. These datasets are raster representations of various environmental, geological, and land use attributes within the Puerto Rico StreamStats 2020 study area, and will be served in the Puerto Rico StreamStats 2020 application to describe delineated watersheds. The StreamStats application provides access to spatial analytical tools that are useful for water-resources planning and management, and for engineering and...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Atmosphere, Hydrology, Precipitation, Precipitation Frequency, Puerto Rico, All tags...
thumbnail
Projections of extreme event metrics and threshold exceedances are produced by analyzing the Climate Model Intercomparison Program Phase 6 Localized Constructed Analogs (CMIP6-LOCA2) data set. The primary daily temperature and precipitation data are summarized to 36 annual metrics and 4 monthly metrics. This data set includes output from 27 GCMs for the period 1950-2100 under ssp245, ssp370, and ssp585 scenarios for the Contiguous United States with partial coverage in Mexico and Canada. To support climate research within and outside the Department of Interior these data are distributed in a variety of formats: individual model grids for all years, gridded climatologies (1961-1990, 1971-2000, 1981-2010, 1991-2020,...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change factors derived from various...
thumbnail
Note: This data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P935WRTG. This data release consists of Microsoft Excel workbooks, shapefiles, and a figure (png format) related to a cooperative project between the U.S. Geological Survey (USGS) and the South Florida Water Management District (SFWMD) to derive future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of future (2050-2089) to historical (1966-2005) extreme precipitation depths fitted to extreme precipitation data using a constrained maximum...
thumbnail
This dataset consists of several measures of landscape characteristics, each of which is summarized from raster data within spatial polygons. These spatial polygons represent the land area upstream of sampled stream reaches. These stream reaches were sampled by the Maryland Department of Natural Resources for the Maryland Biological Stream Survey program during survey rounds one, two, and four. Landscape characteristics summarized here are either represented by continuous or discrete raster layers which are summarized as the average value of a given characteristic (continuous data) or the area occupied by each class (discrete data). The continuous datasets summarized included percentage of area occupied by tree...
thumbnail
This child page contains the requisite folder structure along with the model input and output data used in calibrating two Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) models during the calibration period of the study detailed in the associated Scientific Investigations Report "Comparison of Storm Runoff Models for a Small Watershed in an Urban Metropolitan Area, Albuquerque, New Mexico" (Shephard and Douglas-Mankin, 2020). One model uses a curve-number based loss method approach, and the other model uses an initial and constant infiltration rate loss method. Each model was used to simulate storm runoff in the Hahn Arroyo Watershed, an urbanized watershed with concrete lined channels in the...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains the spatial model features (hydrologic response units [HRU_subset.zip] and stream segments [Segments_subset.zip]) on which model inputs and outputs are based. The assembly of model-ready files results in HRU and segment IDs that are different than those in the NHMI database. Two "crosswalk files" (nhm_hru_id_crosswalk.csv, nhm_segment_id_crosswalk.csv) are provided so that the model inputs and outputs can be mapped...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in the year 2040) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2068-72 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates projected future...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in the year 2040) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates change factors derived...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in 2040) or to the period 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled HadGEM2-CC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled HadGEM2-ES Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...


map background search result map search result map Micrometeorological and Soil-Moisture Data at the Amargosa Desert Research Site in Nye County near Beatty, Nevada, January 1, 2017 to May 31, 2019 Basin Characteristic Rasters for Puerto Rico StreamStats, 2021 HEC-HMS Calibration Period Input and Output Data Land Cover, Climate, and Geological conditions summarized within Maryland DNR Biological Stream Survey (MBSS) Catchments Precipitation, soil moisture, and vegetation data from 36 experimental plots in southeastern Utah, near Canyonlands National Park (2015 - 2018) Change factors to derive future precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering all models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_future_to_historical_all_models_RCP8.5.xlsx). GIS Features Used With Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Historical simulated snowpack and other hydrometeorology data at 90 m for the Crown of the Continent and vicinity, United States and Canada, water years 1981-2020 Remotely-sensed observations of the unrestored riparian corridor of the Colorado River Delta in Mexico, 2019-2022 Spreadsheet of change factors at 170 NOAA Atlas 14 stations in Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_2040_to_historical.xlsx) Spreadsheet of change factors at 242 NOAA Atlas 14 stations in Florida derived from the Localized Constructed Analogues (LOCA) downscaled climate dataset (CF_LOCA_2040_to_historical.xlsx) Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering only the best models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_2040_to_historical_best_models_RCP8.5.xlsx) Spreadsheet of projected future precipitation depths at 170 NOAA Atlas 14 stations in Florida fitted to extreme-precipitation events derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (DDF_JupiterWRF_future_2070.xlsx) Spreadsheet of historical precipitation depths at 242 NOAA Atlas 14 stations in Florida fitted to extreme-precipitation events derived from the LOCA downscaled climate dataset (DDF_LOCA_historical.xlsx) Russian River Integrated Hydrologic Model (RRIHM): Agricultural Direct Diversion Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-ES Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-CC CMIP6-LOCA2 threshold and extreme event metric projections from 1950-2100 for the Contiguous United States Precipitation, soil moisture, and vegetation data from 36 experimental plots in southeastern Utah, near Canyonlands National Park (2015 - 2018) HEC-HMS Calibration Period Input and Output Data Micrometeorological and Soil-Moisture Data at the Amargosa Desert Research Site in Nye County near Beatty, Nevada, January 1, 2017 to May 31, 2019 Remotely-sensed observations of the unrestored riparian corridor of the Colorado River Delta in Mexico, 2019-2022 Russian River Integrated Hydrologic Model (RRIHM): Agricultural Direct Diversion Basin Characteristic Rasters for Puerto Rico StreamStats, 2021 Land Cover, Climate, and Geological conditions summarized within Maryland DNR Biological Stream Survey (MBSS) Catchments Historical simulated snowpack and other hydrometeorology data at 90 m for the Crown of the Continent and vicinity, United States and Canada, water years 1981-2020 Change factors to derive future precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering all models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_future_to_historical_all_models_RCP8.5.xlsx). Spreadsheet of change factors at 170 NOAA Atlas 14 stations in Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_2040_to_historical.xlsx) Spreadsheet of change factors at 242 NOAA Atlas 14 stations in Florida derived from the Localized Constructed Analogues (LOCA) downscaled climate dataset (CF_LOCA_2040_to_historical.xlsx) Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering only the best models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_2040_to_historical_best_models_RCP8.5.xlsx) Spreadsheet of projected future precipitation depths at 170 NOAA Atlas 14 stations in Florida fitted to extreme-precipitation events derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (DDF_JupiterWRF_future_2070.xlsx) Spreadsheet of historical precipitation depths at 242 NOAA Atlas 14 stations in Florida fitted to extreme-precipitation events derived from the LOCA downscaled climate dataset (DDF_LOCA_historical.xlsx) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-ES Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-CC GIS Features Used With Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 CMIP6-LOCA2 threshold and extreme event metric projections from 1950-2100 for the Contiguous United States