Skip to main content
Advanced Search

Filters: Tags: random forests (X)

56 results (57ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
Our objective was to model minimum flow coefficient of variation (CV) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between minimum flow CV (the standard deviation of annual minimum flows times 100 divided by the mean of annual minimum flows) on gaged streams (115 gages) and environmental variables....
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
This dataset shows modelled habitat suitability for the Pacific-slope Flycatcher (Empidonax difficilis) under current and projected future conditions. We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps...
thumbnail
This dataset shows modelled habitat suitability for the Collared Pika (Ochotona collaris)Â under current and projected future conditions.We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted...
thumbnail
This dataset shows modelled habitat suitability for the Pacific-slope Flycatcher (Empidonax difficilis)Â under current and projected future conditions.We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps...
thumbnail
Our objective was to model mean annual number of zero-flow days (days per year) for small streams in the Upper Colorado River Basin under historic hydrologic conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between zero-flow days per year on gaged streams (115 gages) and environmental variables....
thumbnail
This dataset shows modelled habitat suitability for the American Beaver (Castor canadensis) under current and projected future conditions. We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
This dataset shows modelled habitat suitability for the Collared Pika (Ochotona collaris) under current and projected future conditions. We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted...
thumbnail
This metadata record describes monthly estimates of natural baseflow for 15,866 stream reaches, defined by the National Hydrography Dataset Plus Version 2.0 (NHDPlusV2), in the Delaware River Basin for the period 1950-2015. A statistical machine learning technique - random forest modeling (Liaw and Wiener, 2018; R Core Team, 2020) - was applied to estimate natural flows using about 150 potential predictor variables (Miller and others, 2018). Calibration data used for the random forest model are available from (Foks and others, 2020). Each model was run twice, first using all potential predictor variables, which represents a "full" model run, and a second time using the top 20 predictors from the original run, which...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
This dataset shows modelled habitat suitability for the Osprey (Pandion haliaetus)Â under current and projected future conditions.We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted from...
thumbnail
This dataset shows modelled habitat suitability for the American Beaver (Castor canadensis)Â under current and projected future conditions.We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted...
thumbnail
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, latesummer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the...


map background search result map search result map Pacific-slope Flycatcher (Empidonax difficilis) Habitat Suitability Change Models collared_pika_map_service american_beaver_map_service Osprey (Pandion haliaetus) Habitat Suitability Change Models Collared Pika (Ochotona collaris) Habitat Suitability Change Models American Beaver (Castor canadensis) Habitat Suitability Change Models Pacific-slope Flycatcher (Empidonax difficilis) Habitat Suitability Change Models Predicted minimum flow coefficient of variation (CV) for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted mean annual number of zero-flow days of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific mean daily flow Predicted specific minimum flow Predicted hydrology (intermittency) under drier climate conditions Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change Predictive soil property map: Clay content Predictive soil property map: Gypsum content Predictive soil property map: Organic matter Predictive soil property map: Rock content (>2mm) Predictive soil property map: Sodium adsorption ratio Predictive soil property map: Very fine sand content Monthly estimates of natural baseflow for 15,866 stream reaches, defined by the National Hydrography Dataset Plus Version 2.0 (NHDPlusV2), in the Delaware River Basin for the period 1950-2015 Monthly estimates of natural baseflow for 15,866 stream reaches, defined by the National Hydrography Dataset Plus Version 2.0 (NHDPlusV2), in the Delaware River Basin for the period 1950-2015 Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change Predicted hydrology (intermittency) under drier climate conditions Predicted specific mean daily flow Predicted specific minimum flow Predicted minimum flow coefficient of variation (CV) for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted mean annual number of zero-flow days of small streams in the Upper Colorado River Basin based on historic flow data Predictive soil property map: Clay content Predictive soil property map: Gypsum content Predictive soil property map: Organic matter Predictive soil property map: Rock content (>2mm) Predictive soil property map: Sodium adsorption ratio Predictive soil property map: Very fine sand content Pacific-slope Flycatcher (Empidonax difficilis) Habitat Suitability Change Models collared_pika_map_service american_beaver_map_service Osprey (Pandion haliaetus) Habitat Suitability Change Models Collared Pika (Ochotona collaris) Habitat Suitability Change Models American Beaver (Castor canadensis) Habitat Suitability Change Models Pacific-slope Flycatcher (Empidonax difficilis) Habitat Suitability Change Models