Skip to main content
Advanced Search

Filters: Tags: riparian (X)

465 results (105ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents ease of access to bottomland areas for vegetation treatments. Access may be by road, 4x4 near road, hike in by field crews or requiring overnight camping or raft access. Access is considered for each side of the river separately.
thumbnail
This data set shows the extent of the Colorado River Conservation Planning project bottomland area as delineated by topography and vegetation, The bottomland area is subdivided into 1 km polygons measured from the upstream project boundary. Reach breaks were determined by large topographic shifts and/or tributary junctions by John Dohrenwend. Please see the project report for more details.
thumbnail
This is a model showing general habitat diversity, including both the structural and cover type diversity. See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning for geoprocessing details.
thumbnail
This project would increase diversity of forbs and invertebrates in riparian and transitional riparian/upland areas through mowing and seeding of native forb species. A tractor powered mower with a seeder would be used to create an enhanced vegetative mosaic within riparian or transitional riparian areas lacking in vegetative species and structural diversity. A contractor would provide a tractor or seeder for distribution of native seed. This project would focus on improving habitat for a diversity of species, particularly sage grouse and other BLM sensitive avian species such as the Brewer's sparrow and sage thrasher, which rely on riparian habitats for critical brood rearing requirements in the Sand Hills ACEC...
Approximately 298 acres of seasonal shallow water wetland habitat will be established or enhanced for water birds and waterfowl by constructing and repairing low level dikes and installing 6 water control structures. In addition, permanent water wetlands will be constructed enhance the wetland complex.
thumbnail
Project Synopsis: the Ferris Mountain project area consists of mainly timbered slopes, interspersed with upland areas dominated by sagebrush, grass, and mountain shrub communities. Timber stands within the project unit consist of Douglas fir, subalpine fir, spruce, lodgepole pine, limber pine, and aspen, in addition to scattered locations of Rocky Mountain juniper. Long-term suppression of wildfires has promoted the encroachment of conifers into shrublands, aspen stands, and drainages supporting aspen, waterbirch and willows, to the point where many of these communities are non-functional. Decadence and disease is commonly observed in terms of mistletoe, blister rust, and bleeding rust, and pine beetles have...
Groundwater is a key driver of riparian condition on dryland rivers but is in high demand for municipal, industrial, and agricultural uses. Approaches are needed to guide decisions that balance human water needs while conserving riparian ecosystems. We developed a space-for-time substitution model that links groundwater change scenarios implemented within a Decision Support System (DSS) with proportions of floodplain vegetation types and abundances of breeding and migratory birds along the upper San Pedro River, AZ, USA. We investigated nine scenarios ranging from groundwater depletion to recharge. In groundwater decline scenarios, relative proportions of tall-canopied obligate phreatophytes (Populus/Salix, cottonwood/willow)...
We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At...
Ecological indicators can be used to detect, diagnose, and summarize information about environmental problems. Despite these important values, few indicators have been systematically validated. Broad information on relevance, feasibility, estimates of variance, and interpretation of the ecological indicator is needed for initial validation. Comparisons of ecological indicators can only be accomplished if they are contrasted with standard published criteria. In this paper, information on the potential use of butterflies as indicators of riparian quality is provided within a standard framework. Additionally, data from riparian areas along the Arkansas, Green, Pecos, Rio Grande, and Yampa rivers were collected to validate...
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This study sought to determine whether riparian vegetation characteristics differed between sites where Tamarix was present and sites where Tamarix was absent during the invasion of the upper Verde. We hypothesized that herbaceous understory and woody plant communities would differ between Tamarix present and absent sites. Our hypothesis was generally confirmed, the two types of sites were different....
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
The Forest and Rangeland Ecosystem Science Center 's mission is to provide scientific understanding and the technology needed to support sound management and conservation of our nation's natural resources, with emphasis on western ecosystems. The scientists from FRESC capitalize on their diverse expertise to answer critically important scientific questions shaped by the equally diverse environments of the western United States. FRESC scientists collaborate with each other and with partners to provide rigorous, objective, and timely information and guidance for the management and conservation of biological systems in the West and worldwide. Research activities are concentrated in Washington, Oregon, Idaho, Nevada,...
thumbnail
This dataset represents the location and class density of potential annual grass risk within the Central Great Basin and Mojave Basin Ecoregion for the 2010 time period. This model represent a composite of multiple inductive (Maximum Entropy) models of varying annual grass cover using non-spectral landscape variables. Input Variables: elevation, aspect, distance to fire, geology, distance to hydric soils, distance to intermitant streams, landform, ombrotype, distance to perrenial streams, soil pH, density of primary roads, density of secondary/local roads, percent sandy soil, slope, thermotype. Classification of Model 0-No/Low Risk 1- < 5% Cover Risk 2- 5%-15% Cover Risk 3 - 15%-25% Cover Risk 4 - 25%-45% Cover...
thumbnail
This simple assessment raster is used to answer management questions (MQs) about where change agents (CAs) overlap with BLM high biodiversity sites (HBS) in the Central Great Basin and Range Ecoregion. This is a basic footprint assessment of anthropogenic features (urban development, roads, etc) intersect with the areas of HBS. The HBS were derived from source data characterizing locations with concentrated at-risk biodiversity or existing source data of a prioritization exercise that identified areas of high conservation significance. It does not model actual response or condition of the HBS to the CAs. The data intersects two primary classes of information: The CAs consist of 19 classes which represent different...
thumbnail
This map shows the distribution of ecological systems in the study area. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should be cited as the data source in any products derived from these data.
thumbnail
The Vista tool is used to create a Scenario of the CAs affecting the North American Warm Desert Lower Montane Riparian Woodland, Shrubland and Stream CE and applies user-input Landscape Condition Model (LCM) scores to generate ESAs for each of the CEs. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the impact of the CA...
thumbnail
The Vista tool is used to create a Scenario of the habitat quality CAs affecting the North American Warm Desert Riparian Woodland, Shrubland, Mesquite Bosque and Stream CE and applies user-input Landscape Condition Model (LCM) scores to generate ESAs for each of the CEs. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the...
thumbnail
The Vista tool is used to create a Scenario of the water use CAs affecting the North American Warm Desert Riparian Woodland, Shrubland, Mesquite Bosque and Stream CE and applies user-input Landscape Condition Model (LCM) scores to generate ESAs for the CE. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the impact of the...


map background search result map search result map Riparian Restoration, Carbon County Wetland Construction and Enhancements, Lincoln County BLM Ferris Mountain Prescribed Burn Phase 1 Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment: North American Warm Desert Lower Montane Riparian Woodland, Shrubland and Stream 30m BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment based on water use: North American Warm Desert Riparian Woodland, Shrubland, Mesquite Bosque and Stream BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment based on habitat quality: North American Warm Desert Riparian Woodland, Shrubland, Mesquite Bosque and Stream BLM REA MBR 2010 CBR Footprint Assessment Change Agent/High Biodiversity Sites Intersect BLM REA MBR 2010 Risk Model of Invasive Annual Grasses BLM REA SLV 2013 Ecological Systems Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Riparian Restoration, Carbon County BLM Ferris Mountain Prescribed Burn Phase 1 BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment: North American Warm Desert Lower Montane Riparian Woodland, Shrubland and Stream 30m BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment based on water use: North American Warm Desert Riparian Woodland, Shrubland, Mesquite Bosque and Stream BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment based on habitat quality: North American Warm Desert Riparian Woodland, Shrubland, Mesquite Bosque and Stream BLM REA MBR 2010 CBR Footprint Assessment Change Agent/High Biodiversity Sites Intersect BLM REA MBR 2010 Risk Model of Invasive Annual Grasses BLM REA SLV 2013 Ecological Systems