Skip to main content
Advanced Search

Filters: Tags: sage-grouse (X) > Date Range: {"choice":"year"} (X)

12 results (47ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration,...
thumbnail
Escalated wildfire activity within the western U.S. has widespread societal impacts and long-term consequences for the imperiled sagebrush (Artemisia spp.) biome. Shifts from historical fire regimes and the interplay between frequent disturbance and invasive annual grasses may initiate permanent state transitions as wildfire frequency outpaces sagebrush communities’ innate capacity to recover. Therefore, wildfire management is at the core of conservation plans for sagebrush ecosystems, especially critical habitat for species of conservation concern such as the greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse). Fuel breaks help facilitate wildfire suppression by modifying behavior through fuels...
thumbnail
We will apply indices of sagebrush ecological integrity, developed by WAFWA, to hierarchical population models of sage-grouse population rates of change over multiple decades to facilitate comprehensive understanding of the links between sagebrush ecosystem health and sagebrush obligate species from the lens of the Conservation Design Strategy. This research will investigate application of core area habitat concepts as it relates to sage-grouse population performance to manage lands within the sagebrush biome. The analysis framework and science deliverables developed from this study can be used as a basis to investigate the population performance of additional species of concern, beyond sage-grouse, in relation...
thumbnail
Values represent percent of surrounding landscape (5K) are dominated by sagebrush cover. Reclassified LANDFIRE 2013 Existing Vegetation Type by selecting the ecological systems containing sagebrush (Codes: 2080, 2125, 2126, 2220, 2064, 2072, 2079, 2124) to create a binary raster dataset with 1 for the sagebrush land cover types and zero for all others.To incorporate sagebrush lost to fire in fires since the Landsat was flown in 2010 that Landfire was derived from, I used fire perimeters from 2011,2012, & 2013 to reclassify pixels designated as having sagebrush as 0 (not having sagebrush), which assumes a homogenous burn (in reality there may be patches of sagebrush left within a burn perimeter). I then ran focalsum...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
thumbnail
Our 2010 statewide connectivity analysis identified broad-scale priority areas for connectivity conservation. More detailed, finer-scale analyses will give land managers the information they need to begin prioritizing and implementing conservation actions. The Columbia Plateau (Appendix A, Fig. 1) was selected for the first ecoregional-scale analysis for two reasons. First, several climate models suggest that the Columbia Plateau Ecoregion in Washington is likely to be a stronghold of shrubsteppe ecosystems under climate change. Second, despite the high level of habitat loss and fragmentation in the ecoregion, our statewide analysis identified previously undocumented patterns and opportunities for multiple-species...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Burrowing Owl, CA-1, California, California, Climate Change, All tags...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
thumbnail
The Western Association of Fish and Wildlife Agencies (WAFWA), U.S. Fish and Wildlife Service (FWS) Inter-Landscape Conservation Cooperative (LCC), Greater Sage-Grouse Initiative, and the U.S. Geological Survey (USGS) funded projects to further sage-grouse conservation efforts. The LCC's involved include the Great Northern, The Great Basin, the Plains and Prairie Potholes, and the Southern Rockies. Read more about these projects in the spreadsheet at https://sites.google.com/site/forumsagesteppe/wfwa-lcc


    map background search result map search result map Sage-grouse WAFWA-LCC-USGS Collaboration Dataset: Sagebrush MW5k Percent Dataset: Index of Relative Ecosystem Resilience and Resistance across Sage-Grouse Management Zones Washington Connectivity: Columbia Basin Understanding greater sage-grouse population trends from the lens of the WAFWA Conservation Design Strategy: implications for management of impacted, core, and growth opportunity areas within the sagebrush biome Predictive Maps of Fuel Break Effectiveness by Treatment Type and Underlying Resilience to Disturbance and Resistance to Invasion Across the Western U.S. Washington Connectivity: Columbia Basin Sage-grouse WAFWA-LCC-USGS Collaboration Understanding greater sage-grouse population trends from the lens of the WAFWA Conservation Design Strategy: implications for management of impacted, core, and growth opportunity areas within the sagebrush biome Predictive Maps of Fuel Break Effectiveness by Treatment Type and Underlying Resilience to Disturbance and Resistance to Invasion Across the Western U.S. Dataset: Index of Relative Ecosystem Resilience and Resistance across Sage-Grouse Management Zones Dataset: Sagebrush MW5k Percent