Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: sagebrush (X)

336 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This theme is polygon data that depicts two types of development for the state of Wyoming. The first is existing development and the second are habitats where there is a high likelihood that development will occur in the near future. We considered development of oil, gas and coal bed methane, mining of minerals (trona, uranimum, coal, and bentonite), urban expansion. Other infrastructure activities such as roads, highways, fiberoptic lines, processing plants, pipelines, other facilities, and various combinations of development that were believed to impact sage-grouse were recorded. Information sources and assessment processes varied depending on data available and resource specialist participation for areas within...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
The distribution of the greater sage-grouse (hereafter sage-grouse; Centrocercus urophasianus) has declined to 56% of its pre-settlement distribution (Schroeder et al. 2004) and abundance of males attending leks has decreased substantially over the past 50 years throughout the species’ range (Garton et al. 2011, Garton et al. 2015, WAFWA 2015). Livestock grazing is a common land use within sage-grouse habitat, and livestock grazing has been implicated by some experts as one of numerous factors contributing to sage-grouse population declines (Beck and Mitchell 2000, Schroeder et al. 2004). However, there are also numerous mechanisms by which livestock grazing might benefit sage-grouse (Beck and Mitchell 2000, Crawford...
The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration,...
thumbnail
Sagebrush ecosystems in North America have experienced extensive degradation since European settlement, and continue to further degrade from exotic invasive plants, greater fire frequency, intensive grazing practices, increased oil and gas development, climate change, and other factors. Remote sensing is often identified as a key information source to facilitate broad-area ecosystem-wide characterization, monitoring and analysis, however, approaches that characterize sagebrush with sufficient and accurate local detail across large areas to support ecosystem research and analysis are unavailable. We have developed a new remote sensing sagebrush ecosystem characterization approach for the state of Wyoming, U.S.A....
thumbnail
A new regional dataset was produced using decision tree classifier and other techniques to model landcover. Multi-season satellite imagery (Landsat ETM+, 1999-2003) and digital elevation model (DEM) derived datasets (e.g. elevation, landform, aspect, etc.) were utilized to derive rule sets for the various landcover classes. Eleven mapping areas, each characterized by similar ecological and spectral characteristics, were modeled independently of one another. An internal validation for modeled classes was performed on a withheld 20% of the sample data to assess model performance. Results of the validation will be presented in the final report and are not available at this time. Mapping area models were mosaicked to...
thumbnail
This fire risk assessment was conducted to understand how resilience and resistance and sage-grouse breeding bird habitat may inform wildland fire management decisions including preparedness, suppression, fuels management and post-fire recovery for western sagebrush communities. The assessment is based on the premise that risk = probability of a threat and the consequences of that threat (negative or positive). Fire risk was determined by the probability of a large wildfire and the consequences of fire on greater sage-grouse breeding habitat. These consequences were modified by the capacity of sage-grouse habitat to be resilient and thus recover from fire processes, and be resistant to invasive annual grasses. The...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...


map background search result map search result map Sagegrouse Developed Habitat for Wyoming at 1:24,000 Remote Sensing Sagebrush Habitat Quantification Products for Wyoming (shrub height) Current Distribution of Sagebrush and Associated Vegetation in the Columbia Basin and Southwestern Regions Fire Risk Assessment for the Greater Sage-Grouse Shrub Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Bare Ground Percent  - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Precipitation (Proportion July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Proportion July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Annual) - 2020-2050 - RCP8.5 - Min Precipitation (Proportion May - Oct) - 1980-2010 Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Min Precipitation (Proportion May - Oct) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: Apr - June) - 2070-2100 - RCP4.5 - Max Precipitation (Mean: July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Apr - June) - 2020-2050 - RCP8.5 - Mean Temperature (Mean: Dec - Mar) - 2070-2100 - RCP8.5 - Min Temperature (Minimum: January) - 2070-2100 - RCP8.5 - Mean Sagegrouse Developed Habitat for Wyoming at 1:24,000 Remote Sensing Sagebrush Habitat Quantification Products for Wyoming (shrub height) Shrub Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Bare Ground Percent  - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Fire Risk Assessment for the Greater Sage-Grouse Current Distribution of Sagebrush and Associated Vegetation in the Columbia Basin and Southwestern Regions Precipitation (Proportion July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Proportion July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Annual) - 2020-2050 - RCP8.5 - Min Precipitation (Proportion May - Oct) - 1980-2010 Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Min Precipitation (Proportion May - Oct) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: Apr - June) - 2070-2100 - RCP4.5 - Max Precipitation (Mean: July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Apr - June) - 2020-2050 - RCP8.5 - Mean Temperature (Mean: Dec - Mar) - 2070-2100 - RCP8.5 - Min Temperature (Minimum: January) - 2070-2100 - RCP8.5 - Mean