Skip to main content
Advanced Search

Filters: Tags: scaling (X)

9 results (39ms)   

View Results as: JSON ATOM CSV
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network.The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic...
A statistical framework is introduced that resolves important problems with the interpretation and use of traditional Horton regression statistics. The framework is based on a univariate regression model that leads to an alternative expression for Horton ratio, connects Horton regression statistics to distributional simple scaling, and improves the accuracy in estimating Horton plot parameters. The model is used to examine data for drainage area A and mainstream length L from two groups of basins located in different physiographic settings. Results show that confidence intervals for the Horton plot regression statistics are quite wide. Nonetheless, an analysis of covariance shows that regression intercepts, but...
Ecologists increasingly use plot-scale data to inform research and policy related to regional and global environmental change. For soil chemistry research, scaling from the plot to the region is especially difficult due to high spatial variability at all scales. We used a hierarchical Bayesian model of plot-scale soil nutrient pools to predict storage of soil organic carbon (oC), inorganic carbon (iC), total nitrogen (N), and available phosphorus (avP) in a 7962-km2 area including the Phoenix, Arizona, USA, metropolitan area and its desert and agricultural surroundings. The Bayesian approach was compared to a traditional approach that multiplied mean values for urban mesic residential, urban xeric residential, nonresidential...
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network.The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic...
Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage and cycling, we examined stands of known disturbance history in three landscapes of the southern Rocky Mountains. Our objectives were to assess the similarity between carbon stocks and fluxes for these three landscapes that differed in climate and disturbance history, characterize the relationship between observed tree age and time since disturbance...
Contents Summary1I.Introduction2II.Variation in plant C : N : P ratios: how much and what are the sources?3III.The growth rate hypothesis in terrestrial plants and the scaling of whole-plant N : P stoichiometry and production5IV.Scaling from tissues to whole plants7V.Applications: large-scale patterns and processes associated with plant stoichiometry9VI.Global change and plants: a stoichiometric scaling perspective11VII.Synthesis and summary12Acknowledgements13References13 Summary Biological stoichiometry theory considers the balance of multiple chemical elements in living systems, whereas metabolic scaling theory considers how size affects metabolic properties from cells to ecosystems. We review recent developments...
thumbnail
Regional, high-resolution mapping of vegetation cover and biomass is central to understanding changes to the terrestrial carbon (C) cycle, especially in the context of C management. The third most extensive vegetation type in the United States is pinyon-juniper (P-J) woodland, yet the spatial patterns of tree cover and aboveground biomass (AGB) of P-J systems are poorly quantified. We developed a synoptic remote-sensing approach to scale up pinyon and juniper projected cover (hereafter "cover") and AGB field observations from plot to regional levels using fractional photosynthetic vegetation (PV) cover derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations...
Longterm (45 years) temporal data were used to assess the influence of spatial scale on temporal patterns of a semi-arid west Texas grassland. Temporal basal area dynamics of common curlymesquite (Hilaria belangeri (Steud.) Nash) collected from permanent plots within two areas that were released from disturbance (longterm overgrazing and drought), were evaluated at two spatial scales (quadrat, site). Wiens (1989) proposed hypotheses to characterize the influence of scale on variability, predictability, and equilibrium. These hypotheses were tested for this grassland and temporal patterns observed were different for each spatial scale. The large scale (site) was characterized by low variation between units, high...
Regional, high-resolution mapping of vegetation cover and biomass is central to understanding changes to the terrestrial carbon (C) cycle, especially in the context of C management. The third most extensive vegetation type in the United States is pinyon?juniper (P?J) woodland, yet the spatial patterns of tree cover and aboveground biomass (AGB) of P?J systems are poorly quantified. We developed a synoptic remote-sensing approach to scale up pinyon and juniper projected cover (hereafter ?cover?) and AGB field observations from plot to regional levels using fractional photosynthetic vegetation (PV) cover derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations...


    map background search result map search result map Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands