Skip to main content
Advanced Search

Filters: Tags: seismic (X)

108 results (135ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The data set consists of time, depth, reflection coefficient synthetic, sonic velocity, density, and amplitude used to create synthetic seismogram - City of Hollywood Utility, G-2961, (HOL-IW1), Broward County, Florida.
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
This data release contains field data for two P-wave seismic reflection profiles acquired across the Warm Springs Valley fault zone, part of the Northern Walker Lane, NV. The dataset consists of high-resolution seismic reflection field records in .segy format, shot coordinates in .csv format, and observers’ logs in .pdf format. The high-resolution seismic profiles are approximately 4 km long. The northern profile (Warm Springs Line 1) is oblique to a prominent fault bounded ridge. The southern profile (Warm Springs Line 2) crosses the northern end of Warm Springs Valley and is nearly co-located with COCORP profile NV-08. To obtain the seismic profiles, we used a 230 kg accelerated weight drop source and a nominal...
Start and end point coordinates for Lake Erie seismic profile
Categories: Physical Item; Tags: Seismic
Start and end point coordinates for Lake Erie seismic profile
Categories: Physical Item; Tags: Seismic
Start and end point coordinates for Lake Erie seismic profile
Categories: Physical Item; Tags: Seismic
thumbnail
The data collection for the concrete-walled channel downstream from the Brandon Road Lock and Dam near Joliet, Illinois occurred in May 2014 Five pounds per square inch (lb/in2) was used as a threshold water pressure value for this study as this value incorporates fish behavior and structural integrity considerations. The Brandon Road study evaluated the performance of two different water gun configurations within the concrete-walled channel downstream from the lock with depths ranging from 12-15 feet. Data from a single 80 cubic inch (in³) water gun produced a roughly cylindrical 5 lb/in2 pressure field 20 feet in radius, oriented vertically, with the radius decreasing to less than 15 feet at the surface. A combination...
thumbnail
The data set consists of time, depth, reflection coefficient synthetic, sonic velocity, density, and amplitude used to create synthetic seismogram - Deerfield Beach BHC, G-2968, Broward County, Florida.
thumbnail
The data set consists of time, depth, reflection coefficient synthetic, sonic velocity, density, and amplitude used to create synthetic seismogram - City of Sunrise Utility, SUN-I3, Broward County, Florida.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
The data set consists of time, depth, reflection coefficient synthetic, sonic velocity, density, and amplitude used to create synthetic seismogram - City of Sunrise Utility, G-2981, Broward County, Florida.
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 50 percent probability of exceedance in 50 years.
This release is an update to the online "Quaternary fault and fold database" for Washington State. The online database was last updated for Washington in 2014 – this 2020 update includes newly identified and modified traces and geometries for on-shore faults gleaned from new peer-reviewed studies and mapping of active faults within the state of Washington. These data contain lines representing the location of faults with known or suspected Quaternary (<1,600,000 yrs) activity in the state of Washington. This data was compiled in conjunction with the Washington State Geological Survey. Faults are attributed following the Quaternary fault and fold database attributes, including information such as age, slip sense,...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
thumbnail
This is a catalog of precise relocations of earthquakes surrounding the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption. These were generated using using surface-wave double-difference measurements, and relative magnitudes were computed between events. For details of the methodology used to produce this catalog, and the interpretation of these data, see the Seismological Research Letter publication "High-Precision Characterization of Seismicity from the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption". Locations use the WGS 1984 Datum. One comma-separated table is provided in this data release, relocations.csv, which is a summary of the relocation magnitude analysis. It includes 18 columns: Column 1 (time):...
Start and end point coordinates for Lake Erie seismic profile
Categories: Physical Item; Tags: Seismic
Start and end point coordinates for Lake Erie seismic profile
Categories: Physical Item; Tags: Seismic


map background search result map search result map Seismic ID:LE-14 for seismic profile Seismic ID:LE-18 for seismic profile Seismic ID:LE-10 for seismic profile Seismic ID:LE-4 for seismic profile Seismic ID:LE-1 for seismic profile Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Western United States Modified Mercalli Intensity based on horizontal spectral response acceleration for 1.0-second period, with 1-percent probability of exceedance in 1 year for the Western United States G-2946 : Synthetic Seismogram Data for Correlation Between Seismic-Reflection Profiles and Well Data, Broward County, Florida G-2968 : Synthetic Seismogram Data for Correlation Between Seismic-Reflection Profiles and Well Data, Broward County, Florida G-2961 (HOL-IW1) : Synthetic Seismogram Data for Correlation Between Seismic-Reflection Profiles and Well Data, Broward County, Florida G-3805 : Synthetic Seismogram Data for Correlation Between Seismic-Reflection Profiles and Well Data, Broward County, Florida SUN-I3 : Synthetic Seismogram Data for Correlation Between Seismic-Reflection Profiles and Well Data, Broward County, Florida G-2981 : Synthetic Seismogram Data for Correlation Between Seismic-Reflection Profiles and Well Data, Broward County, Florida Brandon Road Lock and Dam Hydrophone Data Peak ground acceleration with a 10% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Crustal architecture of the transtensional Warm Springs Valley fault zone, northern Walker Lane 2020 Update to the Quaternary Fault and Fold Database for Washington State High-Precision Seismicity Catalog for the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption Brandon Road Lock and Dam Hydrophone Data Crustal architecture of the transtensional Warm Springs Valley fault zone, northern Walker Lane 2020 Update to the Quaternary Fault and Fold Database for Washington State High-Precision Seismicity Catalog for the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Western United States Modified Mercalli Intensity based on horizontal spectral response acceleration for 1.0-second period, with 1-percent probability of exceedance in 1 year for the Western United States 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years