Skip to main content
Advanced Search

Filters: Tags: sfm (X) > Date Range: {"choice":"year"} (X)

21 results (20ms)   

View Results as: JSON ATOM CSV
thumbnail
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create the DSM was acquired using a UAS fitted with a Ricoh...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a pressure sensor was deployed in the survey area to gain an accurate measurement of the water surface elevation (WSE). After a preliminary dense point cloud was derived from SfM processing, the WSE was used to calculate...
thumbnail
This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a pressure sensor was deployed in the survey area to derive an accurate measurement of the mean water surface elevation (WSE). After a preliminary dense point...
thumbnail
This portion of the data release presents orthomosaic images of the Whale's Tail Marsh region of South San Francisco Bay, CA. The orthomosaics have resolutions of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. The raw imagery used to create these elevation models was acquired from an approximate altitude of 427 meters (1,400 feet) above ground level (AGL), using a Hasselblad A6D-100c camera fitted with an HC 80 lens, resulting in a nominal ground-sample-distance (GSD) of 2.5 centimeters per pixel. The acquisition flight lines were designed to provide approximately 50 percent overlap between adjacent flight lines...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
This portion of the data release presents digital surface models (DSM) of the Whale's Tail Marsh region of South San Francisco Bay, CA. The DSMs have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. Unlike a digital elevation model (DEM), a DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, structures, and other objects have not been removed from the data. The raw imagery used to create these elevation models was acquired from an approximate altitude of 427 meters (1,400 feet) above ground level (AGL), using a Hasselblad A6D-100c camera fitted with an HC 80 lens,...
thumbnail
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The orthomosaics have a resolution of 1.3 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. The raw imagery used to create the orthomosaics was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines at an approximate altitude of 50 meters above ground level (AGL). The flight lines were oriented roughly shore-parallel and were spaced to provide approximately...
thumbnail
This portion of the data release presents digital surface models (DSM) and hillshade images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The DSMs have a resolution of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create this DSM was acquired using a...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
Remote-sensing technologies—such as video imagery, aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)— can be used to measure change along U.S. coastlines. Quantifying coastal change is essential for calculating trends in erosion and accretion, evaluating processes that shape coastal landscapes, and predicting how the coast will respond to future natural disasters (e.g. hurricanes, landslides, wildfires) and longer term climate trends such (e.g. sea-level rise, ecosystem change, coral bleaching), all critical for U.S. coastal communities. Rapid developments have occurred in remote-sensing technologies during the 21st century. With collaborators...
thumbnail
U.S. Geological Survey (USGS) and University of Hawaii - Mānoa (UH) scientists conducted field data collection efforts from August 19th - 27th, 2019 at Pu‘uhonua O Hōnaunau National Historical Park on the Big Island of Hawaii. The data collection efforts utilized a combination of remote sensing technologies to map the topography, critical infrastructure, and most importantly, the cultural assets of Pu‘uhonua O Hōnaunau National Historical Park. The USGS and UH team collected Global Navigation Satellite System (GNSS), total station, and ground based lidar (GBL) data, along with utilizing Uncrewed Aerial Systems (UAS) to collect imagery and UAS lidar to map these features. This data release contains shapefiles of...
thumbnail
This portion of the data release presents a high-resolution orthomosaic image of the coral reef off Waiakane, Molokai, Hawaii. The orthomosaic has a resolution of 2.5 centimeters (cm) per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 24 June 2018. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 75 percent overlap between images from adjacent lines. The UAS was flown at an approximate altitude of 100 meters above ground level (AGL), resulting...
thumbnail
This portion of the data release presents raw aerial imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted in a nadir orientation using a fixed mount. Before each flight, the camera’s digital ISO, aperture, and shutter speed were adjusted for ambient light conditions. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 75 percent overlap between images from adjacent lines. The UAS was flown at an approximate altitude of 100 meters...
thumbnail
This portion of the data release presents a high-resolution orthomosaic image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The orthomosaic has a resolution of 2 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 70 percent overlap between images from adjacent lines. The camera was triggered at 1 Hz using a built-in intervalometer. The UAS was flown at an approximate...
thumbnail
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, were created using structure-from-motion (SfM) techniques. The two study sites are located approximately 640 m from shore and approximately 20 m apart in the alongshore direction. At each site, an approximate 12-meter diameter area was imaged in three passes by a swimmer using a handheld digital camera. These images were fed into Structure-from-Motion (SfM) software to produce high-resolution (fine-scale), accurate, and precise topographic point clouds with sub-centimeter accuracy for both the low- and high-relief sites. In addition, a subset of a previously published (Logan and Storlazzi, 2022), coarser-scale,...
thumbnail
This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Post Point, Bellingham Bay, WA, on 2019-06-06. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre-programmed autonomous flight lines which were oriented roughly shore-parallel and were spaced to provide approximately 70 percent overlap between images from adjacent lines. Three flights (F01, F02, F03) covering the survey area were...
thumbnail
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) square tarps with black-and-white cross patterns anchored to the shallow (less than 1.5 meters deep) seafloor using 0.9 kilogram fishing weights; nine sub-aerial targets consisting of orange plastic five-gallon...
thumbnail
Lava flow hazards are usually thought to end when the erupting vent becomes inactive, but this is not always the case. At Kīlauea in August 2014, a spiny ʻaʻā flow erupted from the levee of a crusted perched lava lake that had been inactive for a month, and the surface of the lava lake subsided as the flow advanced downslope over the following few days. Topography constructed from oblique aerial photographs using structure-from-motion (SfM) software shows that the volume of the flow (~68,000 m3) closely matches the volume of subsidence of the crusted lava lake (~64,000 m3). The similarity of these volumes, along with the textural characteristics of the lava, shows that the lava that fed the flow had been stored...


map background search result map search result map Topographic point clouds for the Mud Creek landslide, Big Sur, California from structure-from-motion photogrammetry from aerial photographs High-resolution orthophotograph of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 10, 2016 Original aerial photographs of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 High-resolution orthophotograph of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Orthomosaic imagery for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Orthomosaic imagery for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Aerial imagery from UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai Orthomosaic images of the Whale's Tail Marsh region, South San Francisco Bay, CA Digital Surface Models (DSMs) of the Whale's Tail Marsh region, South San Francisco Bay, CA Topobathymetric Model of Pu‘uhonua O Hōnaunau National Historical Park, 2011 to 2019 – Field Survey Source and Validation Data Structure-from-Motion source images for an inactive perched lava lake formed at Pu'u'o'o (Kilauea) in 2014 Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Aerial imagery from UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Orthomosaic imagery for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Orthomosaic imagery for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Topographic point clouds for the Mud Creek landslide, Big Sur, California from structure-from-motion photogrammetry from aerial photographs Topobathymetric Model of Pu‘uhonua O Hōnaunau National Historical Park, 2011 to 2019 – Field Survey Source and Validation Data Structure-from-Motion source images for an inactive perched lava lake formed at Pu'u'o'o (Kilauea) in 2014 Original aerial photographs of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 High-resolution orthophotograph of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 Orthomosaic images of the Whale's Tail Marsh region, South San Francisco Bay, CA Digital Surface Models (DSMs) of the Whale's Tail Marsh region, South San Francisco Bay, CA High-resolution orthophotograph of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 10, 2016