Skip to main content
Advanced Search

Filters: Tags: simulation (X)

408 results (193ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
This map represents the change between 1971-2000 and 2070-2099 in the annual peak fraction of total live vegetation carbon held in herbaceous plants, as simulated by the model MC1 under the Hadley future climate projection and A2 anthropogenic emissions scenario. The fraction of total live vegetation carbon held in herbaceous plants for the respective 30-year periods increased in some of the 5,311 grid cells of the Apache-Sitgreaves study area and decreased in others.The range of data values is from -0.817 to +0.999. The mean value is +0.210. Data values are calculated as GFRAC(2070-2099) minus GFRAC(1971-2000). GFRAC data is from MC1 version B60. The vegetation model MC1 (e.g. Bachelet et al. 2001) was used...
thumbnail
MC1 is a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. It was created to assess the potential impacts of global climate change on ecosystem structure and function at a wide range of spatial scales from landscape to global. The model incorporates transient dynamics to make predictions about the patterns of ecological change. MC1 was created by combining physiologically based biogeographic rules defined in the MAPSS model with a modified version of the biogeochemical model, CENTURY. MC1 includes a fire module, MCFIRE, that mechanistically simulates the occurrence and impacts of fire events. Climate input data sources for this...
thumbnail
MC1 is a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. It was created to assess the potential impacts of global climate change on ecosystem structure and function at a wide range of spatial scales from landscape to global. The model incorporates transient dynamics to make predictions about the patterns of ecological change. MC1 was created by combining physiologically based biogeographic rules defined in the MAPSS model with a modified version of the biogeochemical model, CENTURY. MC1 includes a fire module, MCFIRE, that mechanistically simulates the occurrence and impacts of fire events. Climate input data sources for this...
thumbnail
This map is one of the layers used to recreate Figure 2 in Churkina and Running (1998) in Data Basin (file title: Climate controls on plant growth) Each pixel (0.5 x 0.5) on the map represents a value derived from a specific function of annual mean temperature (Figure 1 in Churkina and Running 1998). Exerpt from Churkina and Running 1998: Though extreme low mean annual temperatures restrict vegetation productivity, less extreme low temperatures may also limit plant productivity during the period of maximum growth. The degree of thermal limitation on NPP gradually declines as the annual temperatures rise; the limitation increases again when the annual temperatures get too high. Vegetation productivity can be...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
This dataset depicts dominant species groups in Minnesota (USA) at year 0 (1995) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) A2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated. Restoration harvesting was spatially allocated following ecological land units (rather than ownership) and harvest frequency, severity, and size distributions were based on historic wind and fire regimes. The projected dominant species were listed as follows: 1) Spruce and Fir; 2) Northern Hardwoods: Sugar Maple; 3) Northern Hardwoods: Red Maple; 4) Aspen and Birch; 5) White, Red, and Jack Pine; 6)...
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 100 (2095) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Sugar Maple (Acer saccharum) in Minnesota (USA) at year 100 (2095) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
MC1 results were produced for the MsTMIP (Multi-scale Synthesis and Terrestrial Model Intercomparison Project: http://nacp.ornl.gov/MsTMIP.shtml). This dataset shows net ecosystem productivity simulated by MC1 for the spinup phase for the conterminous US at 0.5 degree resolution. Input data come from CRU (http://www.cru.uea.ac.uk/). In this case, spinup climate is a random sequence of 100 years chosen from the period 1901-1930. The results were aggregated by 25 year-periods for the animation. For display purposes, the start date for this time sequence was set to January 1, 1900.
thumbnail
Description of Work USGS is creating forecasting tools for managers to determine how water withdrawals or other hydrologic or land use changes in watersheds may affect Great Lakes ecosystems. This project is determining fish distributions in Great Lakes tributaries and how changes in stream flow may affect them. This information will help guide restoration efforts to achieve maximum effectiveness and success. Estimates were produced using WATER - a TOPMODEL based tool that estimates streamflow at any point along the stream network. The pour point is selected using a point-and-click GUI that samples information about the basin using a geodatabase of topographic and soil data spatial layers.
thumbnail
This dataset represents the historical mean annual area burned per ~ 4 km pixel, averaged for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Historical mean area burned per year (in square meters) per ~4 km pixel was averaged across each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
This dataset represents the average C3 grass fraction (a biogeographic index based on the ratio of C3 to C4 grass) for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Simulated mean C3 grass fraction was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model...
thumbnail
This dataset represents the average potential evaporation for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean potential evaporation (in mm H2O yr-1), was determined for each HUC5 watershed by averaging values of original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
This map represents the percent change in average annual precipitation, simulated by the model MC1 between the 30-year periods 1971-2000 and 2070-2099 under the Hadley climate change and A2 emissions scenarios. The average annual precipitation for the respective 30-year periods decreased in all of the 5,311 grid cells of the Apache-Sitgreaves study area. The greatest decrease was -25.1%; the least decrease was -9.2%; and the mean decrease was -15.8% The vegetation model MC1 (e.g. Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts at two study sites in eastern Oregon (Deschutes and Fremont-Winema National Forests) and in Arizona...
thumbnail
This map shows the predicted area of high fire potential for the current year up to the end of the forecast period as simulated by a modified version of the MC1 Dynamic General Vegetation Model (DGVM). Different colors indicate the level of consensus among five different MC1 simulations (i.e., one for each forecast provided by five different weather models), ranging from one of five to five of five simulations predicting high fire potential. The area of high fire potential is where PDSI and MC1-calculated values of potential fire behavior (fireline intensity for forest and shrubland and rate of spread of spread for grassland) exceed calibrated threshold values. Potential fire behavior in MC1 is estimated using...
thumbnail
Percent change in the average annual amount of live tree carbon for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. Data for the study site were simulated by the MC1 model under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario.Mean live forest carbon (output variable C_Forestyr in MC1 version B60, which includes both above and below-ground tree carbon,) was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Units are grams per square meter, and percent change was calculated as (C_Forestyr(2071-2100)...


map background search result map search result map Simulated historical potential evaporation (1971-2000) for OR and WA, USA Simulated runoff under CSIRO Mk3 A2 (2070-2099 average) in millimeters for the Pacific Northwest, USA MC1 DGVM fire potential consensus forecast January-December 2012 (number of weather forecasts resulting in high potential) Simulated mean historical area burned (1971-2000 average per ~4 km pixel) for AZ and NM, USA Simulated historical C3 grass fraction (1971-2000) for OR and WA, USA Simulated percent change in live forest carbon between historical and future time periods under three climate change projections for AZ and NM, USA Net Ecosystem Productivity- MC1 spinup results using MsTMIP spinup climate Change in the fraction of total live vegetation carbon held in herbaceous plants between 1971-2000 and 2070-2099, as simulated by MC1 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA Percent change in mean annual precipitation between 1971-2000 and 2070-2099 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA Vegetation Type for the United States and Canada Simulated for the years 2070-2099 as Simulated by the MC1 Model (NA8K version) and Based on Climate Projections from the MIROC 3.2 MEDRES GCM for the SRES B1 Emission Scenario Vegetation Type for the United States and Canada Simulated for the years 2070-2099 as Simulated by the MC1 Model (NA8K version) and Based on Climate Predictions from the HADLEY for the SRES A2 Emission Scenario Temperature (annual mean) limitation on plant growth Total soil residual water simulated under Hadley CM3 A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for January for the Pacific Northwest, USA (2070-2099 average) Minnesota (USA) Climate Change Project: Red Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Sugar Maple at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Dominant species at Year 0 (1995), assuming emissions scenario A2, Hadley3 GCM, restoration harvest rates and intensity Simulated PNW biomass consumed (g C/m2) under CSIRO Mk3 A2 (2070-2099 ave) Minnesota (USA) Climate Change Project: Sugar Maple at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Dominant species at Year 0 (1995), assuming emissions scenario A2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Simulated PNW biomass consumed (g C/m2) under CSIRO Mk3 A2 (2070-2099 ave) Simulated runoff under CSIRO Mk3 A2 (2070-2099 average) in millimeters for the Pacific Northwest, USA Total soil residual water simulated under Hadley CM3 A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for January for the Pacific Northwest, USA (2070-2099 average) Simulated mean historical area burned (1971-2000 average per ~4 km pixel) for AZ and NM, USA Simulated percent change in live forest carbon between historical and future time periods under three climate change projections for AZ and NM, USA Simulated historical potential evaporation (1971-2000) for OR and WA, USA Simulated historical C3 grass fraction (1971-2000) for OR and WA, USA MC1 DGVM fire potential consensus forecast January-December 2012 (number of weather forecasts resulting in high potential) Net Ecosystem Productivity- MC1 spinup results using MsTMIP spinup climate Vegetation Type for the United States and Canada Simulated for the years 2070-2099 as Simulated by the MC1 Model (NA8K version) and Based on Climate Projections from the MIROC 3.2 MEDRES GCM for the SRES B1 Emission Scenario Vegetation Type for the United States and Canada Simulated for the years 2070-2099 as Simulated by the MC1 Model (NA8K version) and Based on Climate Predictions from the HADLEY for the SRES A2 Emission Scenario Temperature (annual mean) limitation on plant growth