Skip to main content
Advanced Search

Filters: Tags: snow (X)

154 results (12ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These files include historical downscaled estimates of decadal average monthly snow-day fraction ("fs", units = percent probability from 1 – 100) for each month of the decades from 1900-1909 to 2000-2009 at 771 x 771 m spatial resolution. Each file represents a decadal average monthly mean. Version 1.0 was completed in 2015 Version 2.0 was completed in 2018 These snow-day fraction estimates were produced by applying equations relating decadal average monthly temperature to snow-day fraction to downscaled decadal average monthly temperature. Separate equations were used to model the relationship between decadal monthly average temperature and the fraction of wet days with snow for seven geographic regions in the...
thumbnail
The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA), has an extensive history of monitoring snow and ice coverage. Accurate monitoring of global snow and ice cover is a key component in the study of climate and global change as well as daily weather forecasting. By inspecting environmental satellite imagery, analysts from the Satellite Analysis Branch (SAB) at the Office of Satellite Data Processing and Distribution (OSDPD), Satellite Services Division (SSD), created a Northern Hemisphere snow and ice map from November 1966 until the National Ice Center (NIC) took over production in 2008. Initially, the product was produced...
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs....
Diurnal cycles of streamflow in snow-fed rivers can be used to infer the average time a water parcel spends in transit from the top of the snowpack to a stream gauge in the river channel. This travel time, which is measured as the difference between the hour of peak snowmelt in the afternoon and the hour of maximum discharge each day, ranges from a few hours to almost a full day later. Travel times increase with longer percolation times through deeper snowpacks, and prior studies of small basins have related the timing of a stream's diurnal peak to the amount of snow stored in a basin. However, in many larger basins the time of peak flow is nearly constant during the first half of the melt season, with little or...
thumbnail
The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA), has an extensive history of monitoring snow and ice coverage. Accurate monitoring of global snow and ice cover is a key component in the study of climate and global change as well as daily weather forecasting. By inspecting environmental satellite imagery, analysts from the Satellite Analysis Branch (SAB) at the Office of Satellite Data Processing and Distribution (OSDPD), Satellite Services Division (SSD), created a Northern Hemisphere snow and ice map from November 1966 until the National Ice Center (NIC) took over production in 2008. Initially, the product was produced...
thumbnail
These files include climatological summaries of downscaled historical and projected decadal average monthly snowfall equivalent ("SWE", in millimeters), the ratio of snowfall equivalent to precipitation, and future change in snowfall for October-March at 771-meter spatial resolution across the state of Alaska. **Derived snow variables and summaries. Data are for summary October to March Alaska climatologies for:** 1) historical and future snowfall equivalent ("SWE"), produced by multiplying snow-day fraction by decadal average monthly precipitation and summing over 6 months from October to March to estimate the total SWE on April 1. 2) historical and future ratio of SWE to precipitation ("SFEtoP"), SFEtoP is the...
thumbnail
These are model input and comparative data derived from pre-fire aerial LiDAR acquired in May 2012 for a small basin in the Valles Caldera, Northern New Mexico to represent canopy characteristics pre-fire. These characteristics include, (1) canopy closure, (2) edginess to the north, (3) edginess to the south, (4) leaf area index, (5) maximum tree height, (6) mean distance to canopy, (7) mean tree height, and (8) total gap area. These input data are intended to accompany a published report (The effects of wildfire on snow water resources estimated from canopy disturbance patterns and meteorological conditions [Moeser, Broxton and Harpold, 2019]). Each characteristic is provided in an individual ascii file. All data...
Summary Analysis of historical streamflow trends and their relationship to landscape characteristics is essential for understanding geographic differences in runoff within the Great Lakes basin and for distinguishing temporal trends from temporal variance. Factor analysis of streamflow records (1956–1988) from 32 US Geological Survey gauging stations within the Great Lakes basin revealed distinct spatio-temporal patterns of stream runoff within five different regions of the basin. Streams represented by the first annual factor occurred in southern Wisconsin and the lower peninsula of Michigan, and exhibited a linear increase in mean annual streamflow over the 33 year period caused by increased autumn and winter...
thumbnail
Snow and Ice current modeled distribution, and status. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should be cited as the data source in any products derived from these data.
thumbnail
Remote camera data on snow presence, snow depth, and wildlife detections on Moscow Mountain in Latah County, ID, USA. Reconyx Hyperfire I and Hyperfire II cameras were used and set to take hourly timelapse images and motion-triggered images. The cameras were deployed from October 2020 - May 2021. Snow presence was assessed up to 15 m from the camera. Snow depth was measured using virtual snow stakes created with the edger R package created by the author. Wildlife were marked as present in all photos in which they appear, and new individuals were counted. Snow density was collected using a federal or prairie snow sampler. Snow hardness was collected using a ram penetrometer. Solar radiation was calculated using hemispherical...
thumbnail
We collected snow density measurements at camera sites from December 2020 - April 2021, at the same time as snow hardness measurements. We took measurements every few weeks as logistics allowed. We took samples near the camera site in snow visually similar to the snow in the camera viewshed (the geographical area that is visible from a location) to prevent snow conditions from being disturbed beyond normal camera deployment. We took snow density samples using a homemade prairie sampler in snow depths < 100 cm and using a federal snow sampler in snow depths > 100 cm. The sampler was inserted into the snow to remove a snow core. We retained the core if the depth of snow in the sampler was at least 90% of the actual...
thumbnail
ClimateWNA was used to downscale historical data and future climate projections to a 1-km 2 grid. ClimateWNA is a program that generates both directly calculated and derived climate variables for specific locations across western North America (Wang et al. 2012) using Parameter-elevation Regressions on Independent Slopes Model (PRISM). We generated annual, seasonal and monthly climate data for the period 1961 to 1990. For future climate projections, we used the SRES A2 greenhouse-gas emissions scenario from the IPCC Fourth Assessment Report. We generated five sets of future climate projections averaged for the time period 2070-2099: BCCR BCM2.0, CCCMA CGCM3, CSIRO MK 3.0, INMCM 3.0, MIROC3.2 MEDRES. Downloads:...
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
Ground-based discrete snowpack measurements were collected during winter field campaigns starting in 2020. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation between snow dynamics and water resources. This data release consists of three child items. Each child item contains snow depth, snow density, snow temperature, or snow water equivalent values measured discretely in the field. The data are provided in comma separated value (CSV) files.
thumbnail
The Database was built to enable data integration across sources, as well as to support program planning and observational network design. The Imiq Data Portal provides a snapshot of available hydroclimate data – a map-based view of where , what , and when data have been obtained. Users can submit a custom data query, specifying variable of interest, geographic bounds, and time step. Imiq will aggregate and export data records from multiple sources in a common format, with full metadata records that provide information about the source data.
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ABLATION, ABLATION, ACTIVE LAYER, ACTIVE LAYER, ALBEDO, All tags...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
thumbnail
This dataset includes Snow Free Date(sfdy) for northern Alaska in GeoTiff format, covering the years 1980-2012. Snow Free Date is defined as day of the end of the core snow period(day of year). The core snow season is defined to be the longest period of continuous snow cover in each year. The dataset was generated by the Arctic LCC SNOWDATA: Snow Datasets for Arctic Terrestrial Applications project.“Day-of-year” (doy) output is expressed in Ordinal dates (“1” on 1 January, and “365” on 31 December). Dates have not been corrected for leap years. This output is appropriate for display purposes, as it is readily interpreted as calendar day of year. It is not recommended as input for analysis, as it may produce incorrect...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
thumbnail
This dataset includes Snow Depth(snod) for northern Alaska in GeoTiff format, covering the years 1980-2012. Snow Depth is defined as depth on 1 March(m). The dataset was generated by the Arctic LCC SNOWDATA: Snow Datasets for Arctic Terrestrial Applications project.The dataset is delivered in the ZIP archive file format. Each year is output in a separate GeoTiff file, where the year is indicated by the filename.Over the last 20 years, under a variety of NOAA, NSF, and NASA research programs, a snow-evolution modeling system has been developed that includes the MicroMet micrometeorological model, the SnowModel snow-process model, and the SnowAssim data assimilation model. These modeling tools can be thought of as...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
thumbnail
This data release includes simulation output from SnowModel (Liston and Elder, 2006), a well-validated process-based snow modeling system, and supporting snow, meteorological, and streamflow observations from the water years 2011 through 2015 (October 1, 2010, through September 30, 2015) across a 3,600 square kilometer model domain in the north-central Colorado Rocky Mountains. For each water year, SnowModel simulations were completed for a (1) baseline simulation, (2) bark-beetle disturbance condition simulation, (3) 2016 - 2035 future climate condition simulation (S1), and (4) 2046 - 2065 future climate condition simulation (S2). Sexstone and others (2018) provide details and summarize findings from each of the...
Snow samples were collected in southeastern Idaho over two winters to assess trace element and common ion concentrations in air pollutant fallout across the region. The objectives were to: (1) develop snow sampling and analysis techniques that produce accurate and ultra-low measurements of a broad suite of fallout elements, (2) identify the spatial and temporal trends of the fallout elements across the region, (3) determine if there are unique combinations of fallout elements that are characteristic to the major source areas in the region (source area profiles), and (4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate...


map background search result map search result map Western North American Climate Data from the Pacific Northwest Climate Change Vulnerability Assessment Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) IMS Daily Northern Hemisphere Snow and Ice Analysis (Day 1, 2011) IMS Daily Northern Hemisphere Snow and Ice Analysis (Day 1, 2008) FSA 10:1 NAIP Imagery m_3409537_se_15_1_20150807_20151005 3.75 x 3.75 minute JPEG2000 from The National Map Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC SnowModel simulations and supporting observations for the north-central Colorado Rocky Mountains during water years 2011 through 2015 SNOWDATA GeoTIFF Annual Snow Free Date (year) SNOWDATA GeoTIFF Annual Snow Depth Imiq Data Portal BLM REA SNK 2010 TES Ecosystems Snow Ice Status Pre-Fire Input Data NGWOS Ground Based Discrete Snowpack Measurements Snow Density Measurements at Remote Camera Stations on Moscow Mountain in Latah County, ID (12/1/20-4/30/21) Environmental Data at Remote Camera Stations on Moscow Mountain in Latah County, ID, USA (10/20/20-5/30/21) Pre-Fire Input Data Snow Density Measurements at Remote Camera Stations on Moscow Mountain in Latah County, ID (12/1/20-4/30/21) Environmental Data at Remote Camera Stations on Moscow Mountain in Latah County, ID, USA (10/20/20-5/30/21) FSA 10:1 NAIP Imagery m_3409537_se_15_1_20150807_20151005 3.75 x 3.75 minute JPEG2000 from The National Map NGWOS Ground Based Discrete Snowpack Measurements Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC BLM REA SNK 2010 TES Ecosystems Snow Ice Status SNOWDATA GeoTIFF Annual Snow Free Date (year) SNOWDATA GeoTIFF Annual Snow Depth Western North American Climate Data from the Pacific Northwest Climate Change Vulnerability Assessment Imiq Data Portal Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) IMS Daily Northern Hemisphere Snow and Ice Analysis (Day 1, 2011) IMS Daily Northern Hemisphere Snow and Ice Analysis (Day 1, 2008)