Skip to main content
Advanced Search

Filters: Tags: soil stability (X)

8 results (13ms)   

View Results as: JSON ATOM CSV
thumbnail
These data were compiled to examine how climate change affects biocrust recovery from both physical and climate-induced disturbance. Objective(s) of our study were to uncover the trajectory of biological soil crust communities and soil stability following disturbance and under warming. These data represent biological soil crust surveys under 5 treatments at three sites. These data were collected at three sites: Arches National Park, Canyonlands National Park and Castle Valley. Data collection for a physical disturbance experiment where annual human-trampling occurred at the sites in Arches and Canyonlands began in 1996 and was concluded in 2018. Data collection for a 13-year full-factorial in situ climate manipulation...
Tags: 20 point-intercept frames, Arches National Park, Canyonlands National Park, Castle Valley, Climatology, All tags...
Semiarid forests across the western USA and elsewhere are being thinned to reduce risk from fire, restore previous ecological conditions, and/or salvage trees from recently burned areas. Prescriptions and monitoring for thinning generally focus on biotic characteristics of vegetation, like tree density, rather than abiotic characteristics of soils and their loss, which are usually only considered in association with water erosion. Recent studies indicate that sediment transport by wind in forests is substantial and can exceed water transport, yet forest wind erosion responses to tree thinning and/or burning are unknown. We measured wind-driven horizontal dust flux, a metric related to wind erosion, with respect...
thumbnail
These data were compiled for a restoration experiment testing the regenerative and functional response of biocrust inoculum reintroduced to a field setting. Regenerative traits measured included measurements of biocrust cover, chlorophyll content, and the roughness of the soil surface. Functional traits measured included nutrient cycling and soil stability. Additionally, these data were compiled for an experiment testing how much soil is lost from different types of ground cover. The data collected was related to ground cover and the amount of soil lost from plots through time. These data were used to inform the conclusions drawn in the accompanying manuscript.
Microphytic crusts form at the soil surface in arid and semiarid rangelands. They bind soil particles together and purportedly influence hydrologic and stability responses to rainfall. We tested this influence in a designed rainfall simulation experiment conducted on a sandy lam site in Capitol Reef National Park, Utah, that had been protected from livestock and human traffic for two to three years. Treatments consisted of microphytic crust conditions: 1) living and undisturbed (control); 2) chemically killed to determine structural influence (chemically killed), and mechanically removed from the soil surface (scalped) to approximate conditions of absence. Microphytic crusts in control and chemically killed treatments...
Off-road military vehicle traffic is a major consideration in the management of military lands. The objective of this study was to determine the impacts of military tracked M1A1 heavy combat tank vehicles on sediment loss from runoff, surface plant cover, and surface microtopography in a desert military training environment. A randomized block design was used which had 10 blocks with 4 plots in each block. Each block had randomly selected treatments that included an untreated control, 1 pass by a M1A1 tank under wet seasonal conditions, 3 passes by a M1A1 tank under wet seasonal conditions, 1 pass by a M1A1 tank under dry seasonal conditions, and 3 passes by a M1A1 tank under dry seasonal conditions. Data were analyzed...
Desert soil surfaces are generally covered with biological soil crusts, a group of organisms dominated by cyanobacteria, lichens, and mosses. Despite their unassuming appearance, these tiny organisms are surprisingly critical to many processes in past and present desert ecosystems and are vital in creating and maintaining fertility of desert soils. They fix both carbon and nitrogen, much of which is leaked to the soils below. They stabilize soils, capture nutrient-rich dust, and can stimulate plant growth. These organisms must tolerate extreme temperatures, drought, and solar radiation, despite having relatively few wet hours for metabolic activity. Under most circumstances, they are extremely vulnerable to climate...
thumbnail
Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability...
Desert soil surfaces are generally covered with biological soil crusts, a group of organisms dominated by cyanobacteria, lichens, and mosses. Despite their unassuming appearance, these tiny organisms are surprisingly critical to many processes in past and present desert ecosystems and are vital in creating and maintaining fertility of desert soils. They fix both carbon and nitrogen, much of which is leaked to the soils below. They stabilize soils, capture nutrient-rich dust, and can stimulate plant growth. These organisms must tolerate extreme temperatures, drought, and solar radiation, despite having relatively few wet hours for metabolic activity. Under most circumstances, they are extremely vulnerable to climate...


    map background search result map search result map Untangling the biological contributions to soil stability in semiarid shrublands Erosion and Rehabilitation Data, Bandelier National Monument, New Mexico, USA Data and software code from two long-term experiments (1996-2011 and 2005-2018) at three sites on the Colorado Plateau of North America Data and software code from two long-term experiments (1996-2011 and 2005-2018) at three sites on the Colorado Plateau of North America Erosion and Rehabilitation Data, Bandelier National Monument, New Mexico, USA Untangling the biological contributions to soil stability in semiarid shrublands