Skip to main content
Advanced Search

Filters: Tags: sonar (X) > partyWithName: Water Resources (X)

18 results (38ms)   

View Results as: JSON ATOM CSV
thumbnail
These data are bathymetry (river bottom elevation) in XYZ format, generated from the March 29-30, 2017 and April 13, 2017, bathymetric survey of the East Fork White River at Columbus, Indiana. The bathymetry was collected from approximately the confluence of Driftwood and Flatrock rivers, downstream to the confluence of Haw Creek. Hydrographic data were collected using an acoustic Doppler current profiler (ADCP) with integrated Differential Global Positioning System (DGPS). Data were collected as the surveying vessel traversed the river, approximately perpendicular to the velocity vectors at 55 cross sections which were spaced 200 feet apart along the river. Additional cross sections were collected upstream and...
thumbnail
These data are high-resolution bathymetry (lake bottom elevation) in a gridded XYZ format, generated from hydrographic surveys of Morse and Geist Reservoirs in April and May of 2016. Hydrographic data were collected using a multibeam echo-sounder (MBES) with integrated inertial navigation solution (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the lake along survey lines distributed throughout the area. Data collection software integrated and stored the depth data from the multibeam sonar and the horizontal and vertical position and attitude data of the vessel from the INS in real time. In the shallow areas, additional data were collected with an acoustic Doppler current profiler...
thumbnail
These data are high-resolution bathymetry (lake bottom elevation) in a gridded XYZ format, generated from hydrographic surveys of Morse Reservoir in May 2016. Hydrographic data were collected using a multibeam echo-sounder (MBES) with integrated inertial navigation solution (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the lake along survey lines distributed throughout the area. Data collection software integrated and stored the depth data from the multibeam sonar and the horizontal and vertical position and attitude data of the vessel from the INS in real time. In the shallow areas, additional data were collected with an acoustic Doppler current profiler (ADCP) and a real-time...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry to approximately 1.3 kilometers (0.8 miles) offshore. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 m; multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and...
thumbnail
These data are bathymetry (river bottom elevation) in XYZ format, generated from the April 4-5, 2017, bathymetric survey of the Rolling Fork and Beech Fork near Boston, Kentucky. The bathymetry was collected from approximately 1.9 miles upstream from Kentucky State Highway 62 on the Beech Fork and approximately 1.5 miles upstream from Kentucky State Highway 62 on the Rolling Fork, to 2.6 miles downstream from Kentucky State Highway 62 on the Rolling Fork. Hydrographic data were collected using an acoustic Doppler current profiler (ADCP) with integrated Differential Global Positioning System (DGPS). Data were collected as the surveying vessel traversed the river, approximately perpendicular to the velocity vectors...
thumbnail
This data release includes multispectral images and field measurements of water depth from the Sacramento River near Glenn, California, used to evaluate the potential for efficient reach-scale mapping of river bathymetry using Uncrewed Aircraft Systems (UAS). The images were acquired by a MicaSense RedEdge-MX Dual Camera deployed from a Trinity F90 vertical take-off and landing (VTOL) UAS. The 4 km long study area along the Sacramento River was subdivided into three distinct but adjacent areas of interest (AOIs) and image data were collected from one AOI each day between September 14 and 16, 2021. The image data were ortho-rectified using Quantum-Systems QBase 3D and Agisoft Metashape software and saved as GeoTIFF...
thumbnail
A bathymetric survey of DeQueen Lake, Sevier County, Arkansas was conducted in July, 2015, by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for multi-beam sonar surveys similar to those described by Lee, K.G. (2013) and Huizinga (2016). Data from the bathymetric survey were merged with data from an aerial LiDAR survey conducted in March, 2008 for the U.S. Army Corps of Engineers, Little Rock District and from the combined XYZ dataset, a digital terrain model (DTM) of the lakebed below flood pool elevation 474 feet above the North American Vertical Datum of 1988 (NAVD88) was created. Products derived from the DTM include a digital elevation model (DEM) in...
thumbnail
A bathymetric survey of Nimrod Lake, Arkansas, was conducted in late April to mid-May, 2016, by the Lower Mississippi-Gulf Water Science Center (LMG WSC) of the U.S. Geological Survey (USGS) using methodologies for sonar surveys similar to those described by Wilson and Richards (2006) and Richards and Huizinga (2018). Point data from the bathymetric survey were merged with point data from an aerial LiDAR survey conducted in December, 2010, that were provided by the U.S. Army Corps of Engineers (USACE), Little Rock District. From the combined point dataset, a terrain dataset (a type of triangulated irregular network, or TIN, model) was created in Esri ArcGIS, version 10.5, for the area within the approximate extent...
thumbnail
A bathymetric survey of Norfork Lake, Arkansas-Missouri, was conducted in September-October, 2015, by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for multi-beam sonar surveys similar to those described by Lee (2013) and Huizinga (2016). Data from the bathymetric survey were merged with data collected during a March 2008 aerial LiDAR survey provided by the U.S. Army Corps of Engineers, Little Rock District. Using Esri ArcGIS version 10.3.1, a feature dataset of the XYZ points from the merged LiDAR and bathymetry data was created within a file geodatabase and an associated terrain (digital terrain model, or DTM) created from the XYZ feature dataset. Products...
thumbnail
Bathymetric data were collected by the U.S. Geological Survey (USGS) in 2019 for approximately 2.2 square kilometers of the Nehalem Bay between the Highway 101 bridge and Nehalem Bay State Park (about 6.5 kilometers) near Wheeler, Oregon. The data were collected using a Trimble R8 Global Navigation Satellite System (GNSS) receiver combined with a Seafloor Systems Hydrolite TM single-beam 200 kilohertz echosounder mounted to a motorized boat. GPS positions received corrections in real time from the Oregon Real-Time GNSS Network. Sound velocity profiles were recorded at 19 different locations evenly spaced throughout the survey area using an AML Oceanographic Base X2 100 meter sound velocity profiler in order to quantify...
thumbnail
Bathymetric data were collected by the U.S. Geological Survey (USGS) in 2019 for approximately 2.2 square kilometers of the Nehalem Bay between the Highway 101 bridge and Nehalem Bay State Park (about 6.5 kilometers) near Wheeler, Oregon. The data were collected using a Trimble R8 Global Navigation Satellite System (GNSS) receiver combined with a Seafloor Systems Hydrolite TM single-beam 200 kilohertz echosounder mounted to a motorized boat. GPS positions received corrections in real time from the Oregon Real-Time GNSS Network. Sound velocity profiles were recorded at 19 different locations evenly spaced throughout the survey area using an AML Oceanographic Base X2 100 meter sound velocity profiler in order to quantify...
thumbnail
In 2021, the USGS 3D Elevation Program (3DEP) funded the collection of topo-bathymetric lidar (sometimes referred to as "green lidar") on the McKenzie River, Oregon. As part of this acquisition, lidar data were collected starting on the McKenzie River below Trail Bridge Reservoir and extending downstream roughly 125 km to its confluence with the Willamette River. Bathymetric lidar produced measurements of river bathymetry in areas of the McKenzie River channel that were generally less than 3 m in depth but did not produce measurements in deeper areas of the river. To fill the gaps in the topo-bathymetric lidar dataset (commonly referred to as "voids"), the U.S. Army Corps of Engineers funded USGS to collect boat-based...
thumbnail
These data are high-resolution bathymetry (river bottom elevation) in XYZ format and measurements of sediment depth in CSV format, generated from the February 13–14, 2017, topographic and hydrographic survey of the Des Plaines River near Brandon Road Lock and Dam at Joliet, Illinois. Hydrographic data were collected in three separate areas (approach channel, mooring area, and upstream pool) using a multibeam echo-sounder (MBES) with integrated inertial navigation solution (INS) mounted on a marine survey vessel. Sediment depth data were collected in the approach channel using navigational software and probing equipment mounted on a marine survey vessel.
thumbnail
River bathymetry measurements were collected in 2017 and 2018 along the Willamette River, Oregon, between Eugene and Newberg. These data were collected to complement a bathymetric lidar dataset collected in 2017 for the same section of river. In many deeper segments of the river channel, bathymetric lidar did not produce measurements of river bathymetry. To fill gaps in the bathymetric lidar dataset, USGS combined bathymetry data previously collected in 2015 and 2016 with newly collected survey data from 2017 and 2018. The bathymetric survey data acquired in 2017 and 2018 focused on filling gaps within the 2017 bathymetric lidar dataset. Bathymetry data were collected using a network based real time kinematic global...
thumbnail
A bathymetric survey of Dierks Lake, Arkansas, was conducted in late June - early July 2018 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Surveys using methodologies for sonar surveys similar to those described by Wilson and Richards (2006) and Richards and Huizinga (2018). Data from the bathymetric survey were combined with data from an aerial Light Detection And Ranging (LiDAR) survey conducted in 2016 by the National Resources Conservation Service (U.S. Geological Survey, 2017) to create a digital elevation model (DEM) of the extent of the flood pool of the lake and compute volume (storage capacity) of the lake at 1-foot increments in water surface elevation from 444-557 feet (ft)...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Walker Lake lies within a topographically closed basin in west-central Nevada and is the terminus of the Walker River. Accurately determining the bathymetry and relations between lake-surface altitude, surface area, and storage volume are part of a study to improve the water budget for Walker Lake. Bathymetry of Walker Lake was measured using a single-beam echosounder coupled to a differentially-corrected global positioning system....
thumbnail
A bathymetric survey of Gillham Lake, Arkansas, was conducted in late June 2018 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for sonar surveys like those described by Wilson and Richards (2006) and Richards and Huizinga (2018). Data from the bathymetric survey were combined with data from an aerial Light Detection And Ranging (LiDAR) survey conducted in 2016 by the National Resources Conservation Service (U.S. Geological Survey, 2017) to create a digital elevation model (DEM) of the extent of the flood pool of the lake and compute volume (storage capacity) of the lake at 1-foot increments in water surface elevation from 431-559 feet (ft) above the North...
thumbnail
These data are high-resolution bathymetry (lake bottom elevation) in a gridded XYZ format, generated from hydrographic surveys of Geist Reservoir in April and May of 2016. Hydrographic data were collected using a multibeam echo-sounder (MBES) with integrated inertial navigation solution (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the lake along survey lines distributed throughout the area. Data collection software integrated and stored the depth data from the multibeam sonar and the horizontal and vertical position and attitude data of the vessel from the INS in real time. In the shallow areas, additional data were collected with an acoustic Doppler current profiler (ADCP)...


    map background search result map search result map Bathymetry and Storage Capacity of DeQueen Lake, Sevier County, Arkansas, 2015. Bathymetry and Storage Capacity of Norfork Lake, Arkansas-Missouri, 2015. Multibeam bathymetry and sediment depth data at select locations on the Des Plaines River near Joliet, Illinois, February 13–14, 2017 Bathymetry on the East Fork White River at Columbus, Indiana, March 29-30 and April 13, 2017 Bathymetry on the Rolling Fork and Beech Fork near Boston, Kentucky, April 4-5, 2017 Bathymetry and Storage Capacity of Nimrod Lake, Arkansas Bathymetry and Storage Capacity of Gillham Lake, Arkansas (ver. 1.1, April 2020) Bathymetry and Storage Capacity of Dierks Lake, Arkansas Single-beam Echosounder Bathymetry of the Willamette River, Oregon 2015-2018 Bathymetry of Morse and Geist Reservoirs in central Indiana, 2016 Bathymetry of Morse Reservoir near Noblesville, Indiana, 2016 Bathymetry of Geist Reservoir near Fishers, Indiana, 2016 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, August 2019 Single-beam Echosounder bathymetry of the Nehalem Bay near Wheeler, Oregon 2019 Digital elevation model of the Nehalem Bay near Wheeler, Oregon 2019 Digital elevation model and single beam sonar data from the McKenzie River, Oregon, 2021 Digital elevation model of Walker Lake, West-Central Nevada Multispectral images and field measurements of water depth from the Sacramento River near Glenn, California, acquired September 14-16, 2021 Bathymetry on the East Fork White River at Columbus, Indiana, March 29-30 and April 13, 2017 Multispectral images and field measurements of water depth from the Sacramento River near Glenn, California, acquired September 14-16, 2021 Bathymetry on the Rolling Fork and Beech Fork near Boston, Kentucky, April 4-5, 2017 Multibeam bathymetry and sediment depth data at select locations on the Des Plaines River near Joliet, Illinois, February 13–14, 2017 Digital elevation model of the Nehalem Bay near Wheeler, Oregon 2019 Single-beam Echosounder bathymetry of the Nehalem Bay near Wheeler, Oregon 2019 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, August 2019 Bathymetry and Storage Capacity of DeQueen Lake, Sevier County, Arkansas, 2015. Bathymetry and Storage Capacity of Dierks Lake, Arkansas Bathymetry and Storage Capacity of Gillham Lake, Arkansas (ver. 1.1, April 2020) Bathymetry and Storage Capacity of Nimrod Lake, Arkansas Bathymetry of Morse and Geist Reservoirs in central Indiana, 2016 Bathymetry and Storage Capacity of Norfork Lake, Arkansas-Missouri, 2015. Digital elevation model and single beam sonar data from the McKenzie River, Oregon, 2021 Single-beam Echosounder Bathymetry of the Willamette River, Oregon 2015-2018 Digital elevation model of Walker Lake, West-Central Nevada