Skip to main content
Advanced Search

Filters: Tags: south america (X) > Types: Citation (X)

42 results (15ms)   

View Results as: JSON ATOM CSV
thumbnail
This contains the South American portion of the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and...
thumbnail
This inventory was originally created by Gorum and others (2014) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.2 17 km N of Puerto Aisen, Chile earthquake that occurred on 21 April 2007 at 23:45:56 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
Maximum considered earthquake geometric mean peak ground acceleration maps (MCEG) are for assessment of the potential for liquefaction and soil strength loss, as well as for determination of lateral earth pressures in the design of basement and retaining walls. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCEG ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. It represents the annual rate of exceedance versus 0.2-second spectral response acceleration.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 2 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 2 percent probability of exceedance in 50 years.
thumbnail
This dataset contains the Compound Topographic Index (CTI) for South America from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The data were developed and distributed by processing units. There are 10 processing units for South America. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. sa_dem_3.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and...
thumbnail
This dataset contains the Digital Elevation Model (DEM) for South America from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The data were developed and distributed by processing units. There are 10 processing units for South America. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. sa_dem_3.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment...
thumbnail
Risk-targeted maximum considered earthquake ground acceleration maps (MCER) are for the design of buildings and other structures. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCER ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic and deterministic values for 0.2-second spectral response acceleration are available here.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in distribution and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the 21st century, temperate drylands may contract by a third, primarily converting to subtropical drylands,...
thumbnail
This dataset contains the slope for South America from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The data were developed and distributed by processing units. There are 10 processing units for South America. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. sa_dem_3.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The...
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as moderate (MMI ≥ VII) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VII is equivalent to peak ground acceleration of 0.22g and 1.0-second horizontal spectral acceleration of 0.23g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic...
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru,...


map background search result map search result map Gorum and others (2014) Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Compound Topographic Index (CTI) from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Digital Elevation Model (DEM) from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Slope from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 1.0-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Gorum and others (2014) Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Compound Topographic Index (CTI) from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Digital Elevation Model (DEM) from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America Slope from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- South America 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years