Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: species distribution model (X)

183 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Future (2046-2065) predicted probability of fisher year-round occurrence projected under the A1fi emissions scenario with the Hadley CM3 GCM model (Gordon et al. 2000, Pope et al. 2000). Projected fisher distribution was created with Maxent (Phillips et al. 2006) using fisher detections (N = 102, spanning 1993 – 2011) and seven predictor variables: mean winter (January – March) precipitation, mean summer (July – September) precipitation, mean summer temperature amplitude, mean daily low temperature for the month of the year with the warmest mean daily low temperature, mean fraction of vegetation carbon burned, mean vegetation carbon (g C m2), and modal vegetation class. Predictor variables had a grid cell size of...
thumbnail
Description: Predicted probability of fisher year-round occurrence created with Maxent (Phillips et al. 2006) using fisher detections (N = 102, spanning 1993 – 2011) and seven predictor variables: mean winter (January – March) precipitation, mean summer (July – September) precipitation, mean summer temperature amplitude, mean daily low temperature for the month of the year with the warmest mean daily low temperature, mean fraction of vegetation carbon burned, mean vegetation carbon (g C m2), and modal vegetation class. Predictor variables had a grid cell size of 10 km, vegetation variables were simulated with MC1 (Hayhoe et al. 2004) and climate variables were provided by the PRISM GROUP (Daly et al. 1994). This...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
Predicted probability of marten year-round occurrence derived from future (2076-2095) climate projections and vegetation simulations. Projected marten distribution was created with Maxent (Phillips et al. 2006) using marten detections (N = 102, spanning 1993 – 2011) and eight predictor variables: mean potential evapotranspiration, mean annual precipitation, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, understory index (fraction of grass vegetation carbon in forest), average maximum tree LAI, and modal vegetation class. Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections,...
Abstract (from http://www.esajournals.org/doi/abs/10.1890/11-2296.1): Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site,...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The desert bighorn sheep mountain habitat data provided by  Diane Mastalir (California Department of Fish and Wildlife) is intended to identify historic, current, and potential core habitat for desert bighorn sheep in California (excluding the Peninsular bighorn sheep).This layer represents mountain habitat with a slope of 15% or greater. It was created using a NED 30 meter resolution DEM clipped to the study area. Slope of 15% or greater was extracted from the 30 meter DEM. A conditional evaluation was performed on the image giving the output cell a value of 1.This dataset was resampled from 30m to 270m resolution by Conservation Biology Institute and generalized using majority filter and boundary clean techniques....
thumbnail
Predicted probability of fisher year-round occurrence created with Maxent (Phillips et al. 2006) using fisher detections (N = 302, spanning 1990 – 2011) and five predictor variables: mean annual precipitation, mean summer (July – September) precipitation, mean understory index (fraction of grass vegetation carbon in forest), mean forest carbon (g C m2), and mean fraction of vegetation carbon in forest. Predictor variables had a grid cell size of 800 m by 800 m, vegetation variables were simulated with MC1 dynamic global vegetation model (Bachelet et al. 2001) and historical climate variables were provided by the PRISM GROUP (Daly et al. 2008). This fisher distribution model has a 10-fold cross-validated AUC of...
thumbnail
Future (2076-2095) predicted probability of marten year-round occurrence projected under the A2 emissions scenario with the PCM1 GCM (Washington et al. 2000; Meehl et al. 2003). The projected marten distribution was created with Maxent (Phillips et al. 2006) using marten detections (N = 302, spanning 1990 – 2011) and nine predictor variables: mean annual precipitation, mean summer (July – September) precipitation, mean summer temperature amplitude, mean annual temperature maximum, mean fraction of vegetation carbon burned, mean understory index, mean vegetation carbon (g C m2), modal vegetation class, and average maximum tree LAI. Predictor variables had a grid cell size of 10 km, vegetation variables were simulated...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...


map background search result map search result map Desert Bighorn Sheep - Species Distribution Model, DRECP Predicted probability of marten year-round occurrence, 2076-2095, Hadley CM3 A2, 800 m resolution Predicted probability of fisher year-round occurrence, 1986-2005, 800 m resolution Predicted probability of fisher year-round occurrence, 2046-2065, Hadley CM3 A1fi, 10 km resolution Predicted probability of fisher year-round occurrence, 1986-2005, Hadley CM3 A1fi, 10 km resolution Predicted probability of marten year-round occurrence, 2076-2095, PCM1 A2, 10 km resolution Hot, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for spineless horsebrush (Tetradymia canescens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Warm, dry scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Warm, dry scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for sugar pine (Pinus lambertiana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for lodgepole pine (Pinus contorta murrayana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Ensemble forecast of climate suitability for rubber rabbitbrush (Chrysothamnus nauseosus) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, dry scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, wet scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Water Balance and Habitat Suitability Data for Pinus Albicaulis in Greater Yellowstone Ecosystem Hot, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for spineless horsebrush (Tetradymia canescens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Warm, dry scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Warm, dry scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for sugar pine (Pinus lambertiana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for lodgepole pine (Pinus contorta murrayana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Ensemble forecast of climate suitability for rubber rabbitbrush (Chrysothamnus nauseosus) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, dry scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, wet scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Water Balance and Habitat Suitability Data for Pinus Albicaulis in Greater Yellowstone Ecosystem Desert Bighorn Sheep - Species Distribution Model, DRECP Predicted probability of marten year-round occurrence, 2076-2095, Hadley CM3 A2, 800 m resolution Predicted probability of fisher year-round occurrence, 1986-2005, 800 m resolution Predicted probability of fisher year-round occurrence, 2046-2065, Hadley CM3 A1fi, 10 km resolution Predicted probability of fisher year-round occurrence, 1986-2005, Hadley CM3 A1fi, 10 km resolution Predicted probability of marten year-round occurrence, 2076-2095, PCM1 A2, 10 km resolution