Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: storage (X)

270 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents the soil water storage capacity (AWS in mm at 0.25 m depth) from SSURGO and STATSGO soil descriptions for soil map units in the state of southern Alaska that lie within the North Pacific Landscape Conservation Cooperative. Available Water Storage 0-25 cm - Weighted Average (centimeters). Available water storage (AWS). The volume of water that the soil, to a depth of 25 centimeters, can store that is available to plants. It is reported as the weighted average of all components in the map unit, and is expressed as centimeters of water. AWS is calculated from AWC (available water capacity) which is commonly estimated as the difference between the water contents at 1/10 or 1/3 bar (field capacity)...
thumbnail
This dataset represents the soil water storage capacity (AWS in mm at 0.5 m depth) from SSURGO and STATSGO soil descriptions for soil map units in the state of southern Alaska that lie within the North Pacific Landscape Conservation Cooperative. Available Water Storage 0-50 cm - Weighted Average (centimeters). Available water storage (AWS). The volume of water that the soil, to a depth of 50 centimeters, can store that is available to plants. It is reported as the weighted average of all components in the map unit, and is expressed as centimeters of water. AWS is calculated from AWC (available water capacity) which is commonly estimated as the difference between the water contents at 1/10 or 1/3 bar (field capacity)...
The primary supposition about renewable forms of energy is that use of such resources will not result in depletion or exhaustion. While it is true that natural energy flows such as sun and wind are not directly subject to degradation by use, there may still be indirect limitations on renewability. The exploitation of natural energy flows may require that systems of nonrenewable "support" resources be used to capture, store, and convert natural energy into useful forms. Poor resource management practices that degrade the support resources may therefore, in effect, endanger renewability. Biomass is an illustrative case of a renewable energy resource with nonrenewable support components. The soil and water management...
The primary supposition about renewable forms of energy is that use of such resources will not result in depletion or exhaustion. While it is true that natural energy flows such as sun and wind are not directly subject to degradation by use, there may still be indirect limitations on renewability. The exploitation of natural energy flows may require that systems of nonrenewable "support" resources be used to capture, store, and convert natural energy into useful forms. Poor resource management practices that degrade the support resources may therefore, in effect, endanger renewability. Biomass is an illustrative case of a renewable energy resource with nonrenewable support components. The soil and water management...


map background search result map search result map Soil water storage capacity (AWS in mm at 0.25 m depth) for the North Pacific Landscape Conservation Cooperative- southern Alaska (a), USA Soil water storage capacity (AWS in mm at 0.5 m depth) for the North Pacific Landscape Conservation Cooperative- southern Alaska (a), USA Soil water storage capacity (AWS in mm at 0.25 m depth) for the North Pacific Landscape Conservation Cooperative- southern Alaska (a), USA Soil water storage capacity (AWS in mm at 0.5 m depth) for the North Pacific Landscape Conservation Cooperative- southern Alaska (a), USA