Skip to main content
Advanced Search

Filters: Tags: stream discharge (X) > Types: Citation (X)

21 results (43ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
Water velocities and discharge were measured in the lock chamber and immediately downstream of Brandon Road Lock on the Des Plaines River at river mile 286 on December 9-10, 2014 using Teledyne RDI Rio Grande 600 and 1200 kHz acoustic Doppler current profilers (ADCP). The data were georeferenced with a differential GPS receiver with submeter accuracy. These ADCP measurements were collected in support of the US Army Corps of Engineers Great Lakes and Mississippi River Interbasin Study (GLMRIS). Velocity measurements were processed using the Velocity Mapping Toolbox (Parsons and others, 2013) to derive temporally- and spatially-averaged water velocity values. Discharge measurements were processed with the QRev discharge...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
Nitrate-nitrogen export from the Raccoon River watershed in west-central Iowa is among the highest in the United State and contributes to impairment of downstream water quality. We examined a rare long-term record of streamflow and nitrate concentration data (1972–2000) to evaluate annual and seasonal patterns of nitrate losses in streamflow and baseflow from the Raccoon River. Combining hydrograph separation with a load estimation program, we estimated that baseflow contributes approximately two-thirds (17.3 kg/ha) of the mean annual nitrate export (26.1 kg/ha). Baseflow transport was greatest in spring and late fall when baseflow contributed more than 80% of the total export. Herein we propose a ‘baseflow enrichment...
thumbnail
A comma separated values (csv) file that is a snapshot of the U.S. Geological Survey peak flow file on November 19, 2008. The file lists agency, station identification, water year, peak date, peak values, peak qualification codes, gage height values, gage height qualification codes and year of last peak for all stream gaging stations for which peak streamflow has been recorded.
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
A comma separated values (csv) file that is a snapshot of percent difference between November 19, 2008 and November 14, 2016 peak streamflow. The file lists station identification, water year, original (2008) peak Q, current (2016) peak Q and percent difference calculated per water year. The percent difference was calculated as the absolute value of [(current peak Q - original peak Q)/(original peak Q) x 100], where current peak Q is the 2016 peak and the original peak Q is the 2008 peak. When an original peak Q value is 0, the resultant percent difference calculation is undefined because of division by 0. In these cases, the percent difference field is populated with NA. Those entries are included in the data file...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
Flow discharges were measured in the Des Plaines River from approximately river mile 286 to river mile 284 on October 19–21, 2015 using Teledyne Rio Grande 1200 kHz acoustic Doppler current profilers (ADCP). The data were georeferenced with differential GPS receivers with submeter accuracy. These flow discharge measurements were collected in support of the US Army Corps of Engineers Great Lakes and Mississippi River Interbasin Study (GLMRIS), and were concurrent with a dye-tracing study. The discharge measurements included here were collected in the following locations: immediately upstream, across, and immediately downstream of the NRG Energy Joliet Power Station right descending bank intake (North Intake) immediately...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
A comma separated values (csv) file that is a snapshot of the U.S. Geological Survey peak flow file on November 14, 2016. The file lists agency, station identification, water year, peak date, peak values, peak qualification codes, gage height values, gage height qualification codes, and year of last peak for all stream gaging stations for which peak streamflow has been recorded.
thumbnail
These data provide a public summary of the changes made to the U.S. Geological Survey peak-flow file since formal Nation-wide checking began in 2008. Coverage includes peak-flow sites in the United States and territories.
thumbnail
Flow discharges were measured in the Des Plaines River immediately downstream of the Brandon Road Lock at river mile 286 on December 9, 2014 a using Teledyne RDI Rio Grande 1200 kHz acoustic Doppler current profiler (ADCP). The data were georeferenced with a differential GPS receiver with submeter accuracy. These flow discharge measurements were collected in support of the US Army Corps of Engineers Great Lakes and Mississippi River Interbasin Study (GLMRIS). ADCP data were collected and initially reviewed in the WinRiver II software. Final review of discharge measurements was completed using the QRev discharge computation and review software version 3.35 (Mueller, 2016). The output from QRev includes an XML document...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...


map background search result map search result map Miscellaneous flow discharge measurements collected downstream of Brandon Road Lock and Dam Data Documenting the U.S. Geological Survey Peak-Flow File Data Verification Project, 2008-16 Flood inundation mapping data for Johnson Creek near Sycamore, Oregon Peak Flow File November 14 2016 Peak Flow File November 19 2008 Percentage Differences Streamflow Flood inundation extents for flows of 800 to 3,080 cfs at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor.shp) Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) HEC-RAS model boundary for flood inundation maps for Johnson Creek at Sycamore gage, Portland, Oregon Flood inundation depth for a flow of 800 cfs (stage 9) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_9.tif) Flood inundation depth for a flow of 982 cfs (stage 10) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_10.tif) Flood inundation depth for a flow of 1,200 cfs (stage 11) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_11.tif) Flood inundation depth for a flow of 1,450 cfs (stage 12) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_12.tif) Flood inundation depth for a flow of 1,750 cfs (stage 13) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_13.tif) Flood inundation depth for a flow of 2,130 cfs (stage 14) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_14.tif) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Flood inundation depth for a flow of 3,080 cfs (stage 16) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_16.tif) Acoustic Doppler current profiler velocity and discharge measurements collected in and near the lock chamber of Brandon Road Lock and Dam, Joliet, Illinois, USA in December 2014 Discharge measurements collected downstream of Brandon Road Lock and Dam, Joliet, Illinois, USA in December 2014 Acoustic Doppler current profiler velocity and discharge measurements collected in and near the lock chamber of Brandon Road Lock and Dam, Joliet, Illinois, USA in December 2014 Discharge measurements collected downstream of Brandon Road Lock and Dam, Joliet, Illinois, USA in December 2014 Miscellaneous flow discharge measurements collected downstream of Brandon Road Lock and Dam Flood inundation extents for flows of 800 to 3,080 cfs at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor.shp) HEC-RAS model boundary for flood inundation maps for Johnson Creek at Sycamore gage, Portland, Oregon Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation mapping data for Johnson Creek near Sycamore, Oregon Flood inundation depth for a flow of 800 cfs (stage 9) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_9.tif) Flood inundation depth for a flow of 982 cfs (stage 10) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_10.tif) Flood inundation depth for a flow of 1,200 cfs (stage 11) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_11.tif) Flood inundation depth for a flow of 1,450 cfs (stage 12) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_12.tif) Flood inundation depth for a flow of 1,750 cfs (stage 13) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_13.tif) Flood inundation depth for a flow of 2,130 cfs (stage 14) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_14.tif) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Flood inundation depth for a flow of 3,080 cfs (stage 16) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_16.tif) Peak Flow File November 14 2016 Peak Flow File November 19 2008 Percentage Differences Streamflow Data Documenting the U.S. Geological Survey Peak-Flow File Data Verification Project, 2008-16