Skip to main content
Advanced Search

Filters: Tags: tamarisk (X)

86 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents ease of access to bottomland areas for vegetation treatments. Access may be by road, 4x4 near road, hike in by field crews or requiring overnight camping or raft access. Access is considered for each side of the river separately.
thumbnail
This data set shows the extent of the Colorado River Conservation Planning project bottomland area as delineated by topography and vegetation, The bottomland area is subdivided into 1 km polygons measured from the upstream project boundary. Reach breaks were determined by large topographic shifts and/or tributary junctions by John Dohrenwend. Please see the project report for more details.
thumbnail
This is a model showing general habitat diversity, including both the structural and cover type diversity. See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning for geoprocessing details.
In many places along the lower Colorado River, saltcedar (Tamarix spp) has replaced the native shrubs and trees, including arrowweed, mesquite, cottonwood and willows. Some have advocated that by removing saltcedar, we could save water and create environments more favourable to these native species. To test these assumptions we compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200?1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR). We found that the fraction of land covered (fc) with vegetation in 2005?2007 was similar to that occupied by native...
Beavers (Castor canadensis Kuhl) can influence the competitive dynamics of plant species through selective foraging, collection of materials for dam creation, and alteration of hydrologic conditions. In the Grand Canyon National Park, the native Salix gooddingii C.R.Ball (Goodding?s willow) and Salix exigua Nutt. (coyote willow) are a staple food of beavers. Because Salix competes with the invasive Tamarix ramosissima Ledeb., land mangers are concerned that beavers may cause an increase in Tamarix through selective foraging of Salix. A spatial analysis was conducted to assess whether the presence of beavers correlates with the relative abundance of Salix and Tamarix. These methods were designed to detect a system-wide...
thumbnail
As part of a study to investigate the causes of channel narrowing and incision in Canyon de Chelly National Monument, the effects of Tamarisk and Russian-olive on streambank stability were investigated. In this study, root tensile strengths and distributions in streambanks were measured and used in combination with a root-reinforcement model, RipRoot, to estimate the additional cohesion provided to layers of each streambank. The additional cohesion provided by the roots in each 0.1-m layer ranged from 0 to 6.9 kPa for Tamarisk and from 0 to 14.2 kPa for Russian-olive. Average root-reinforcement values over the entire bank profile were 2.5 and 3.2 kPa for Tamarisk and Russian-olive, respectively. The implications...
Non-native shrub species in the genus Tamarix (saltcedar, tamarisk) have colonized hundreds of thousands of hectares of floodplains, reservoir margins, and other wetlands in western North America. Many resource managers seek to reduce saltcedar abundance and control its spread to increase the flow of water in streams that might otherwise be lost to evapotranspiration, to restore native riparian (streamside) vegetation, and to improve wildlife habitat. However, increased water yield might not always occur and has been substantially lower than expected in water salvage experiments, the potential for successful revegetation is variable, and not all wildlife taxa clearly prefer native plant habitats over saltcedar....
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This study sought to determine whether riparian vegetation characteristics differed between sites where Tamarix was present and sites where Tamarix was absent during the invasion of the upper Verde. We hypothesized that herbaceous understory and woody plant communities would differ between Tamarix present and absent sites. Our hypothesis was generally confirmed, the two types of sites were different....
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
This map shows risk models for invasive species within the ecoregion. Samples of invasive species are presenting -- falling within 4 categories (exotic, annual grasses, noxious forbs, and woody riparian). Bioclimate data for cheatgrass and tamarisk weed is also shown. The input dataset used for all analysis done for these models are also included. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics...
thumbnail
This map shows risk models for invasive species within the ecoregion. Samples of invasive species are presenting -- falling within 4 categories (exotic, annual grasses, noxious forbs, and woody riparian). Bioclimate data for cheatgrass and tamarisk weed is also shown. The input dataset used for all analysis done for these models are also included. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics...
Saltcedars (Tamarix spp., Tamaricaceae) (SC), are exotic, invasive shrubs to medium trees native to the Old World. In riparian ecosystems of the western United States, SC replaces native plant communities, degrades wildlife habitat, reduces biodiversity, alters stream channel morphology, uses large quantities of groundwater, increases wildfire frequency, reduces recreational and agricultural usage, and probably has contributed to the decline of many wildlife and fish species. In recent years, the southwestern willow flycatcher (Empidonax trailii extimus) (sw WIFL) has begun nesting extensively in SC in some of its major breeding areas in Arizona, but not in other areas, since SC has replaced its native willow nest...
thumbnail
Invasive plants are typically managed using top-down control techniques that focus on the removal of the target organism. Bottom-up control limits the resources available to the undesired species by manipulating disturbance, competition, and successional processes, and thus may prevent reinvasion. Tamarisk species (Tamarix sp.) have invaded riparian areas throughout western North America, resulting in expansive control efforts. A companion study has shown that a native competitor, Box elder (Acer negundo), is capable of outcompeting and killing established Tamarisk through light interception in canyons of Dinosaur National Monument (DNM), Colorado. The goal of this study was to determine the feasibility of using...
thumbnail
This dataset represents the prevalence of trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This map shows stillness of water near bank vegetation within 15 m of the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: main channel, secondary channel, backwater, isolated pool and tributary channel.
thumbnail
These data are aerial image-derived, classification maps of tamarisk (Tamarisk spp.) in the riparian zone of the Colorado River from Glen Canyon Dam to Separation Canyon, a total river distance of 412 km. The classification maps are published in GIS vector format. Two maps are published: 1) a classification of tamarisk from a 0.2 m resolution multispectral image dataset acquired in May 2009 (Tamarisk Classification 2009), and 2) a classification of tamarisk impacted by the tamarisk beetle (Diorhabda carinulata) from a 0.2 m resolution multispectral image dataset acquired in May 2013 (Beetle Impact Classification 2013). Tamarisk presence in 2009 was classified using the Mahalanobis Distance method with a total of...
thumbnail
Relative risk for expansion of Russian olive summarized by 5th level watersheds for the Wyoming Basin Rapid Ecoregional Assessment project area. Current risk of expansion based on suitability models using recent climatic conditions (1980 to 2009). Expansion risk is classified as low for probabilities less than 0.33, medium for probabilities between 0.34 and 0.66, and high for probabilities greater than 0.67. Probabilities based on occurrence models developed by Jarnevich and Reynolds (2011) and Jarnevich and others (2011). Hatched lines denote watersheds where LANDFIRE indicted Russian olive and (or) tamarisk presence. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions....
thumbnail
Our proposal addresses Funding Category Ill by evaluating natural resource management practices and adaptation opportunities. More specifically, our project addresses Science Need #6 to improve monitoring and inventory of watersheds and ecosystems (including invasive species). Our proposed study will occur within the Southern Rockies Landscape Conservation Cooperative (LCC) (upper Virgin River, UT) and the Desert LCC (lower Virgin River, AZ and NVL and therefore will be submitting to both cooperatives. Invasive saltcedar (Tamarix spp.) is the third most abundant tree in Southwestern riparian systems (Friedman et al. 2005). Resource managers must often balance the management goals of protecting wildlife species and...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...


map background search result map search result map Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona Habitat Overlap and Facilitation in Tamarisk and Box Elder Stands: Implications for Tamarisk Control Using Native Plants Effects of Bio-Control and Restoration on Wildlife in Southwestern Riparian Habitats Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Remote sensing derived maps of tamarisk (2009) and beetle impacts (2013) along 412 km of the Colorado River in the Grand Canyon, Arizona Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches BLM REA WYB 2011 Ch06 Invasives BLM REA CBR 2010 MBR Invasive Species BLM REA CBR MBR 2010 Invasive Species Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona Habitat Overlap and Facilitation in Tamarisk and Box Elder Stands: Implications for Tamarisk Control Using Native Plants Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Effects of Bio-Control and Restoration on Wildlife in Southwestern Riparian Habitats Remote sensing derived maps of tamarisk (2009) and beetle impacts (2013) along 412 km of the Colorado River in the Grand Canyon, Arizona BLM REA WYB 2011 Ch06 Invasives BLM REA CBR MBR 2010 Invasive Species BLM REA CBR 2010 MBR Invasive Species