Skip to main content
Advanced Search

Filters: Tags: targets (X) > Types: Citation (X)

4 results (60ms)   

View Results as: JSON ATOM CSV
thumbnail
Imagery acquired with unmanned aerial systems (UAS) and coupled with structure-from-motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black Beach, in Falmouth, Massachusetts to explore scientific research demands on UAS technology for topographic and habitat mapping applications. This project explored the application of consumer-grade UAS platforms...
thumbnail
Imagery acquired with unmanned aerial systems (UAS) and coupled with structure-from-motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black Beach, in Falmouth, Massachusetts to explore scientific research demands on UAS technology for topographic and habitat mapping applications. This project explored the application of consumer-grade UAS platforms...
thumbnail
Imagery acquired with unmanned aerial systems (UAS) and coupled with structure-from-motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black Beach, in Falmouth, Massachusetts to explore scientific research demands on UAS technology for topographic and habitat mapping applications. This project explored the application of consumer-grade UAS platforms...
thumbnail
This dataset documents the locations of ground control points associated with images obtained from unmanned aerial systems (UAS) flown in the Cape Cod National Seashore. Most of the ground control points were temporary targets placed by the U.S. Geological Survey field crew, but four were man-made features already in place, and two were points selected a posteriori from preliminary orthophotomosaics. Photographs of the four in-place features are included in this dataset, as are images showing the location of the two a posteriori points at two zoom levels. The locations of these ground control points can be used to constrain photogrammetric reconstructions based on the aerial imagery. The overall objective of the...


    map background search result map search result map Ground control point locations associated with images collected during unmanned aerial systems (UAS) flights over Coast Guard Beach, Nauset Spit, Nauset Inlet, and Nauset Marsh, Cape Cod National Seashore, Eastham, Massachusetts on 1 March 2016 (Text file and photos) Positions of temporary targets used as ground control points associated with UAS flights over Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file) CSV file of names, times, and locations of images collected by an unmanned aerial system (UAS) flying over Black Beach, Falmouth, Massachusetts on 18 March 2016 Low-altitude aerial imagery obtained with unmanned aerial systems (UAS) flights over Black Beach, Falmouth, Massachusetts on 18 March 2016 (JPEG images) Positions of temporary targets used as ground control points associated with UAS flights over Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file) CSV file of names, times, and locations of images collected by an unmanned aerial system (UAS) flying over Black Beach, Falmouth, Massachusetts on 18 March 2016 Low-altitude aerial imagery obtained with unmanned aerial systems (UAS) flights over Black Beach, Falmouth, Massachusetts on 18 March 2016 (JPEG images) Ground control point locations associated with images collected during unmanned aerial systems (UAS) flights over Coast Guard Beach, Nauset Spit, Nauset Inlet, and Nauset Marsh, Cape Cod National Seashore, Eastham, Massachusetts on 1 March 2016 (Text file and photos)