Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: terrain (X)

79 results (62ms)   

View Results as: JSON ATOM CSV
thumbnail
A RESON SeaBat™ 7125 multibeam echosounder in conjunction with an Applanix Position Orientation Solution for Marine Vessels (POS MV™) WaveMaster system motion sensor, HYPACK®/HYSWEEP® navigation software, and Ashtech Z-Xtreme GPS receivers or Trimble R8 receivers was used to survey the Missouri River bed at 15 pipeline crossings at four different locations, at three power plant locations, and at one transmission tower during the 2011 flood event. The format of this data is a grid with each cell covering 0.5 meter by 0.5 meter. The elevation value (North American Vertical Datum, NAVD88) represented by each cell is the most probable elevation for that cell based on calculated Total Propagated Uncertainty (TPU) as...
thumbnail
This dataset displays the Vector Ruggedness Measure (VRM) for the DRECP study site and surrounding 12 km buffer at 270m resolution. This dataset was originally derived at 30m resolution, using the 30m NED, and run with a 9x9 (270m) neighborhood size. The resulting VRM dataset was projected to CA Albers Equal Area NAD83 and resampled to 270m resolution to match the DRECP statistical species distribution models. The Vector Ruggedness Measure measures terrain ruggedness as the variation in three-dimensional orientation of grid cells within a neighborhood. Vector analysis is used to calculate the dispersion of vectors normal (orthogonal) to grid cells within the specified neighborhood. This method effectively captures...
thumbnail
This dataset depicts 10 foot contours derived from the USGS 1/3 arc second (10m) digital elevation model.
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
A RESON SeaBat™ 7125 multibeam echosounder in conjunction with an Applanix Position Orientation Solution for Marine Vessels (POS MV™) WaveMaster system motion sensor, HYPACK®/HYSWEEP® navigation software, and Ashtech Z-Xtreme GPS receivers or Trimble R8 receivers was used to survey the Missouri River bed at 15 pipeline crossings at four different locations, at three power plant locations, and at one transmission tower during the 2011 flood event. The format of this data is a grid with each cell covering 0.5 meter by 0.5 meter. The elevation value (North American Vertical Datum, NAVD88) represented by each cell is the most probable elevation for that cell based on calculated Total Propagated Uncertainty (TPU) as...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
An Innerspace 456 single-beam echosounder in conjunction with a Trimble® differential Global Positioning System (DGPS), HYPACK® navigation software, and Ashtech Z-Xtreme and Trimble® R8 Global Navigation Satellite System (GNSS) receivers was used to survey 7 chutes and 3 backwaters on the Missouri River yearly from 2011-13. These chutes and backwaters are located on the Missouri River between Newcastle, Nebraska and Rulo, Nebraska in the States of Nebraska, Iowa, and Missouri. Surveys of chutes consisted of topographic and bathymetric data collected along transects spaced 30.48 m apart from high bank to high bank. Surveys of backwaters consisted of topographic and bathymetric data collected along a transect grid...
thumbnail
An Innerspace 456 single-beam echosounder in conjunction with a Trimble® differential Global Positioning System (DGPS), HYPACK® navigation software, and Ashtech Z-Xtreme and Trimble® R8 Global Navigation Satellite System (GNSS) receivers was used to survey 7 chutes and 3 backwaters on the Missouri River yearly from 2011-13. These chutes and backwaters are located on the Missouri River between Newcastle, Nebraska and Rulo, Nebraska in the States of Nebraska, Iowa, and Missouri. Surveys of chutes consisted of topographic and bathymetric data collected along transects spaced 30.48 m apart from high bank to high bank. Surveys of backwaters consisted of topographic and bathymetric data collected along a transect grid...
thumbnail
Contours generated from 10m National Elevation Dataset and clipped to the boundary of Modoc National Wildlife Refuge.
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
Synopsis: This report evaluates habitat requirements of the American badger according to parameters of soil texture, graminoid cover, slope, and proximity to roads. Badgers tend to prefer sandy loam and silty loam, medium and moderately coarse textured soils. In terms of graminoid coverage, badgers generally prefer open grassland habitat, but can also be found in agriculturally dominated landscapes containing isolated pockets of Richardson 's ground squirrel colonies. Graminoid coverage of 23% was chosen as the minimum requirement for suitable badger habitat. As slope increases, habitat suitability decreases to a point at which the likelihood of badgers existing there (i.e. cliffs and badlands) is extremely low...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
A bathymetric survey of Norfork Lake, Arkansas-Missouri, was conducted in September-October, 2015, by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for multi-beam sonar surveys similar to those described by Lee (2013) and Huizinga (2016). Data from the bathymetric survey were merged with data collected during a March 2008 aerial LiDAR survey provided by the U.S. Army Corps of Engineers, Little Rock District. Using Esri ArcGIS version 10.3.1, a feature dataset of the XYZ points from the merged LiDAR and bathymetry data was created within a file geodatabase and an associated terrain (digital terrain model, or DTM) created from the XYZ feature dataset. Products...
thumbnail
An Innerspace 456 single-beam echosounder in conjunction with a Trimble® differential Global Positioning System (DGPS), HYPACK® navigation software, and Ashtech Z-Xtreme and Trimble® R8 Global Navigation Satellite System (GNSS) receivers was used to survey 7 chutes and 3 backwaters on the Missouri River yearly from 2011-13. These chutes and backwaters are located on the Missouri River between Newcastle, Nebraska and Rulo, Nebraska in the States of Nebraska, Iowa, and Missouri. Surveys of chutes consisted of topographic and bathymetric data collected along transects spaced 30.48 m apart from high bank to high bank. Surveys of backwaters consisted of topographic and bathymetric data collected along a transect grid...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...


map background search result map search result map American Badger. Terrain Ruggedness, DRECP Missouri River bed elevations at pipeline crossing near Decatur, Nebraska surveyed during 2011 flood on July, 12 Missouri River bed elevations near Nebraska City coal power plant surveyed during 2011 flood on September, 14 Hydrographic Surveys of the Missouri River at Council chute, 2011-13 Hydrographic Surveys of the Missouri River at Deroin chute, 2011-13 Hydrographic Surveys of the Missouri River at Upper Hamburg chute, 2011-13 Steep Slopes Contours, 10ft, Klamath Marsh NWR Contours, 10ft, Modoc NWR Bathymetry and Storage Capacity of Norfork Lake, Arkansas-Missouri, 2015. UMRR Alton Bathymetry Footprint UMRR Dresden Bathymetry Footprint UMRR Starved Rock Bathymetry Footprint UMRR Open River North Bathymetry Footprint UMRR Pool 3 Bathymetry Footprint UMRR Pool 11 Bathymetry Footprint UMRR Pool 14 Bathymetry Footprint UMRR Pool 15 Bathymetry Footprint UMRR Pool 20 Bathymetry Footprint Missouri River bed elevations near Nebraska City coal power plant surveyed during 2011 flood on September, 14 Missouri River bed elevations at pipeline crossing near Decatur, Nebraska surveyed during 2011 flood on July, 12 Hydrographic Surveys of the Missouri River at Council chute, 2011-13 Hydrographic Surveys of the Missouri River at Upper Hamburg chute, 2011-13 Hydrographic Surveys of the Missouri River at Deroin chute, 2011-13 UMRR Pool 15 Bathymetry Footprint UMRR Starved Rock Bathymetry Footprint UMRR Dresden Bathymetry Footprint UMRR Pool 20 Bathymetry Footprint UMRR Pool 3 Bathymetry Footprint Contours, 10ft, Modoc NWR UMRR Pool 14 Bathymetry Footprint Bathymetry and Storage Capacity of Norfork Lake, Arkansas-Missouri, 2015. UMRR Open River North Bathymetry Footprint Terrain Ruggedness, DRECP Steep Slopes