Skip to main content
Advanced Search

Filters: Tags: thermal stratification (X)

1 result (7ms)   

View Results as: JSON ATOM CSV
Climate change is likely to impact terrestrial and aquatic ecosystems via numerous physical and biological mechanisms. This study outlines a framework for projecting potential impacts of climate change on lakes using linked environmental models. Impacts of climate drivers on catchment hydrology and thermal balance in Onondaga Lake (New York State) are simulated using mechanistic models HSPF and UFILS4. Outputs from these models are fed into a lake ecosystem model, developed in AQUATOX. Watershed simulations project increases in the magnitude of peak flows and consequent increases in catchment nutrient export as the magnitude of extreme precipitation events increases. This occurs concurrently with a decrease in annual...