Skip to main content
Advanced Search

Filters: Tags: topographic map (X) > partyWithName: State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys (X)

64 results (99ms)   

View Results as: JSON ATOM CSV
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
This report provides detailed (1:63,360-scale) mapping of the Tanana A-1 and A-2 quadrangles (500 square miles; equivalent to eight 7.5-minute quadrangles). The area is part of the Manley Hot Springs-Tofty mining districts and adjacent to the Rampart mining district to the south of the Tanana B-1 Quadrangle. This report includes detailed bedrock, surficial, structural, and stratigraphic data. Based on the resulting geologic maps, field investigations, and laboratory materials analyses, the report also includes derivative maps of geologic construction materials and geologic hazards. The Tanana A-1 and A-2 Quadrangles and surrounding area comprise several isolated mountainous ridges in the western Yukon-Tanana Upland...
Tags: 40Ar/39Ar, Aerial Photography, Aeromagnetic Map, Aeromagnetic Survey, Age Dates, All tags...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...


map background search result map search result map Geologic map of the Tanana A-1 and A-2 quadrangles, central Alaska High-resolution lidar data for infrastructure corridors, Tanacross Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tanacross Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Bettles Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tanana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Wiseman Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Livengood Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Healy Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Philip Smith Mountains Quadrangle, Alaska Geologic map of the Tanana A-1 and A-2 quadrangles, central Alaska High-resolution lidar data for infrastructure corridors, Tanacross Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tanacross Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Bettles Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tanana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Wiseman Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Livengood Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Healy Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Philip Smith Mountains Quadrangle, Alaska